10-1

COMPLEMENTS MYSQL

PLAN

10.1 Présentation

10.1 Le langage SQL

10.2 Sécurisation de MySQL

10.3 PDO — PHP Data Objects — Complément

OBJECTIF

» Maitriser les syntaxes de base du langage SQL et le mode transactionnel.

10-1.1 PRESENTATION

Ce chapitre complémentaire détaille les requétes du langage SQL servant de sup-
port aux programmes PHP du chapitre 10. Il aborde également le mode transac-
tionnel et en présente a la fois les syntaxes SQL et sa programmation PHP via
PDO.

10-1.2 LE LANGAGE SQL

Cette section présente les syntaxes SQL en ligne de commandes, sous le moniteur
MySQL, comme une suite de manipulations sans détailler chaque instruction. Un
tutoriel complet du langage SQL est disponible a ’'URL : http://sql.sh

Accés au serveur de Base de données

La syntaxe suivante présente I’acces au SGBD MySQL sur le poste local (local-
host). Dans notre exemple, le texte mot_de_passe doit étre remplacé par le mot de
passe effectif. S’il est indiqué sur la ligne de commande (-pmot de passe). Un
message prévient que cette méthode d’acces n’est pas sécurisée.

$ mysql --no-defaults -u root -pmot_de passe -h localhost
Warning: Using a password on the command line interface can be
insecure.

La syntaxe suivante est a privilégier. Le mot de passe est saisi dans un second
temps. L écho de sa frappe n’apparait pas au moment de la saisie.

$ mysql --no-defaults -u root -h localhost -p
Enter password: xxxx
Welcome to the MySQL monitor. Commands end with ; or \g...

Remarque
Les syntaxes sous le moniteur SQL (apres l'invite « mysgl> »), sont présentées en majus-
cules, en respect des régles d’'usage, mais elles peuvent étre saisies en minuscules.

Afficher toutes les bases de données
Une fois connectg, il est possible d’afficher toutes les bases de données.

mysql> SHOW DATABASES;

|information schema|
|cdcol |
Imysqgl |
|performance schema|
|phpmyadmin |
|test |

6 rows in set (0,00 sec)

Quitter le serveur de Base de données
Pout quitter le moniteur MySQL il suffit de saisir :

mysgl> QUIT;
Bye

Gestion d’une base de données

Cette section présente la création et la suppression d’une base de données.

Création

La commande suivante crée la base « CoursPHP » avec un jeu de caractéres utfs.

mysql> CREATE DATABASE CoursPHP CHARACTER SET 'utf8';
Query OK, 1 row affected (0,00 sec)

Suppression

La syntaxe suivante supprime la base de données « CoursPHP ».

mysgl> DROP DATABASE CoursPHP;
Query OK, 0 rows affected (0,01 sec)

Gestion d’une table

Afin de simplifier les syntaxes de création, de suppression ou d’insertion de don-

nées dans une table, on peut indiquer la base de données a utiliser.

mysgl> USE CoursPHP;
Database changed

Création

La syntaxe suivante crée la table « personnes » avec quatre colonnes, « ID » (int de
11 chiffres), « NOM » (varchar de 255 caracteres), « Prenom » (varchar de 255
caracteres), « Age » (int de 11 chiffres). Le moteur de stockage est InnoDB. La

saisie est effectuée sur plusieurs lignes.

mysgl> CREATE TABLE IF NOT EXISTS personnes (

-> ID int(11) NOT NULL,

-> Nom varchar (255) NOT NULL,

-> Prenom varchar (255) NOT NULL,

-> Age int(1l) NOT NULL

->) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8
COMMENT="'Table de personnes';
Query OK, 0 rows affected (0,00 sec)

La clef primaire est affectée sur le champ « ID » :

mysgl> ALTER TABLE personnes

-> ADD PRIMARY KEY (ID);
Query OK, 0 rows affected (0,04 sec)
Records: 0 Duplicates: 0 Warnings: 0

La clef primaire « ID » est auto-incrémenté et sa numérotation démarre a 1 :

mysgl> ALTER TABLE personnes

-> MODIFY ID int(11l) NOT NULL
AUTO_INCREMENT,AUTO_INCREMENT=1;
Query OK, 0 rows affected (0,01 sec)
Records: 0 Duplicates: 0 Warnings: 0

Affichage des tables
Voici la liste des tables présentes dans la base de données courante, « CoursPHP » :

mysql> SHOW TABLES;

oo +
|Tables in CoursPHP|
oo +
|personnes |
oo +

1 row in set (0,00 sec)

Affichage de la structure d’une table
La syntaxe pour afficher la structure de la table « personnes » de la base « Cours-
PHP » est:

mysgl> DESCRIBE CoursPHP.personnes;

e tommm oo fom o fomm - +
|[Field |Type [Null |Key|Default|Extra |
e tommm oo Fomm - fomm - +
ID [int (11) [NO	PRI	NULL lauto_increment		
Nom	varchar (255) INO		NULL	
Prenom	varchar (255) INO		NULL	

|Age [int (11) INO | INULL | |
e tommm oo fom o fomm - +

4 rows in set (0,00 sec)

La syntaxe précédente indique explicitement la base de données et la table. On
aurait pu également saisir :

mysgl> USE CoursPHP;
mysgl> DESCRIBE personnes;

Suppression compléte de la table

Voici la syntaxe pour supprimer la table « personnes » :

mysgl> DROP TABLE personnes;
Query OK, 0 rows affected (0,01 sec)

Vider la table de ses données
La syntaxe suivante vide la table « personnes » de ses données sans la supprimer :

mysgl> TRUNCATE TABLE personnes;
Query OK, 0 rows affected (0,01 sec)

Gestion des données

Insertion de données

L’insertion de quatre personnes dans la table « personnes » se note :

mysgl> INSERT INTO personnes (ID, Nom, Prenom, Age) VALUES
-> (1, 'DUPONT', 'JEAN', 28),
-> (2, 'MARTIN', 'PIERRE', 56),
-> (3, 'DE-LA-FONTAINE', 'JEAN', 110),
-> (4, 'DE-LA-RUE', 'JEAN-CHARLES',6 45);
Query OK, 4 rows affected (0,01 sec)
Records: 4 Duplicates: 0 Warnings: 0

Affichage

Voici I’affichage de tous les enregistrements contenus dans la table « personnes ».

mysgl> SELECT * FROM personnes;

to—mmmm e fomm - +-——+
| ID|Nom | Prenom |Age |
to—mmmm e fomm - +-——+
| 1|DUPONT | JEAN | 28]
| 2|MARTIN | PIERRE | 56|
| 3|DE-LA-FONTAINE |JEAN 110
| 4|DE-LA-RUE | JEAN-CHARLES| 45|
to—mmmm e fomm - +-——+

4 rows in set (0,00 sec)

Modification

La syntaxe suivante modifie le prénom de MARTIN (ID=2), en « PIERRE-
ANDRE » :

mysgl> UPDATE CoursPHP.personnes SET Prenom = 'PIERRE-ANDRE'
WHERE personnes.ID = 2;

Query OK, 1 row affected (0,01 sec)

Rows matched: 1 Changed: 1 TWarnings: 0

Suppression

La syntaxe suivante supprime la personne ayant 1’identifiant numéro 3 :

5

mysqgl> DELETE FROM personnes WHERE ID=3;
Query OK, 1 row affected (0,00 sec)

L’affichage montre que cette personne est supprimée.

mysgl> SELECT * FROM personnes;

to—mmmmm oo fomm - +-——1
| ID|Nom | Prenom | Age |
to—mmmmm oo fomm - +-——1
| 1|DUPONT | JEAN | 28]
| 2|MARTIN | PIERRE-ANDRE| 56|
| 4| DE-LA-RUE | JEAN-CHARLES| 45]
to—mmmmm oo fomm - +-——1

3 rows in set (0,00 sec)

Les critéres de sélection

Il est possible d’affiner les requétes SQL comme SELECT, UPDATE ou DELETE
avec des criteres de sélection tels que : WHERE, ORDER BY, LIMIT. Pour mon-
trer I’usage des ces critéres, nous avons insérez de nouvelles données dans la table
« personnes » dont voici le contenu :

mysgl> SELECT * FROM personnes;

to—mmmm e Fomm - +-——+
| ID|Nom | Prenom |Age |
to—mmmm e Fomm - +-——+
| 1|DUPONT | JEAN | 28]
| 2| JACQUENOD | JEAN-CHRISTOPHE| 54|
| 3|MURCIAN | CAROLE | 44
4	LERY	JEAN-MICHEL	25
5	DE-LA-RUE	JEAN-CHRISTOPHE	27
6	MARTIN	PIERRE-DAVID	27
7	MARTIN	PIERRE	56
8	JACQUENOD	FREDERIC	25
9	1 JACQUENOD	LAURENCE	24
10	DUMOULIN	JEAN-CHRISTOPHE	54
11	LABONNE-JAYAT	OLIVIER	54
12	DE-LA-FONTAINE	JEAN [110]	
13	LEVY	SAMUEL	56
14	DE-LA-RUE	LAURENCE	25
15	DUPONT	JEAN	54
16	MARTIN	ALBERT	25]
to—mmmm e Fomm - +-——+

16 rows in set (0,00 sec)

Le filtrage avec WHERE

Ce critere permet de filtrer sur une partie des données. Par exemple, on peut affi-
cher les prénoms et noms des personnes ayant 25 ans :

mysgl> SELECT Prenom, Nom FROM personnes WHERE Age=25;

| Prenom | Nom \
tommmm e pommmmm o +
| JEAN-MICHEL | LERY \
FREDERIC	JACQUENOD
LAURENCE	DE-LA-RUE
ALBERT	[MARTIN
tommmm e pommmmm o +

4 rows in set (0,00 sec)

IL est également possible d’utiliser I’opérateur LIKE avec la condition WHERE
pour cherche d’aprés un modele particulier. La syntaxe suivante affiche la liste des
personnes ayant un prénom commencant par JEAN. Le caractére % indique un
nombre quelconque de caractéres.

mysgl> SELECT Prenom, Nom FROM personnes WHERE Prenom LIKE

'JEANS ' ;

e e et e +
| Prenom | Nom |
e e et e +
| JEAN | DUPONT

| JEAN-CHRISTOPHE | JACQUENOD

| JEAN-MICHEL | LERY

| JEAN-CHRISTOPHE | DUMOULIN
| JEAN | DE-LA-FONTAINE

|
|
|
| JEAN-CHRISTOPHE | DE-LA-RUE |
|
|
| JEAN | DUPONT |

7 rows in set (0,00 sec)

De méme "opérateur BETWEEN avec la condition WHERE autorise un filtrage
sur une plage de valeurs. La syntaxe suivante travaille sur la table « clients ». Elle
affiche les clients ayant entre 1 et 2 enfants :

mysql> SELECT ID,Nom,Prenom,Etat Civil,Nb Enfants FROM clients
WHERE Nb_Enfants BETWEEN 1 AND 2;

to—mmm oo Fomm - fomm - fomm - +
| ID|Nom | Prenom |[Etat Civil |[Nb_Enfants]
to—mm o Fomm - fomm - fomm - +
| 1|DUPONT | JEAN |[Marié | 2|
| 2| JACQUENOD | JEAN-CHRISTOPHE |Marié | 1]
| 3|MURCIAN | CAROLE |Célibataire] 1]
| 4|LERY | JEAN-MICHEL |[Marié | 2|
| 10| DUMOULIN | JEAN-CHRISTOPHE |Marié | 2|

|11 | LABONNE-JAYAT|OLIVIER |Célibataire| 1]

|14 | DE-LA-RUE | LAURENCE |IMarié \ 1]
| 15| DUPONT | JEAN | Veuf \ 2|
|16 |MARTIN | ALBERT |Célibataire] 1]
oo o oo oo +

9 rows in set (0,00 sec)

Cette autre syntaxe affiche dans 1’ordre, le prénom, le nom et 1’age pour toutes
les personnes dont 1’age est supérieur a 25 ans :

mysgl> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25;

e e et e +--—+
| Prenom | Nom |Age |
e e et e +--—+
| JEAN | DUPONT | 28]
| JEAN-CHRISTOPHE | JACQUENOD | 54
| CAROLE |[MURCIAN | 44
| JEAN-CHRISTOPHE | DE-LA-RUE | 27]
| PIERRE-DAVID |MARTIN | 27
| PIERRE |[MARTIN | 56|
| JEAN-CHRISTOPHE | DUMOULIN | 54
|OLIVIER | LABONNE-JAYAT | 54|
| JEAN | DE-LA-FONTAINE|110]
| SAMUEL | LEVY | 56|
| JEAN | DUPONT | 54
e e et e +--—+

11 rows in set (0,00 sec)

Il est possible de combiner plusieurs conditions. Cette syntaxe affiche le prénom,
le nom et 1’age des personnes dont 1’dge est supérieur a 25 ans ET ayant comme
prénom JEAN :

mysgl> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 AND
Prenom="JEAN" ;

e e bt +-——1
| Prenom | Nom | Age |
e fomm - +-——1
| JEAN | DUPONT | 28]
| JEAN | DE-LA-FONTAINE|110|
| JEAN | DUPONT | 54|
e e bt +-——1

3 rows in set (0,00 sec)

Cette syntaxe affiche le prénom, le nom et I’age des personnes dont 1’age est su-
périeur a 25 ans OU ayant comme prénom JEAN :

mysqgl> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 OR
Prenom="JEAN" ;

| Prenom | Nom |Age |

oo oo o1
| JEAN | DUPONT | 28]
JEAN-CHRISTOPHE	JACQUENOD	54
CAROLE	[MURCIAN	44
JEAN-CHRISTOPHE	DE-LA-RUE	27
PIERRE-DAVID [MARTIN	27	
PIERRE [MARTIN	56	
JEAN-CHRISTOPHE	DUMOULIN	54
[OLIVIER	LABONNE-JAYAT	54
JEAN	DE-LA-FONTAINE	110
SAMUEL	LEVY	56
JEAN	DUPONT	54
oo oo o1

11 rows in set (0,00 sec)

Le tri avec ORDER BY

La syntaxe ORDER BY ordonne les résultats de la requéte. Si on désire présenter
le résultat de la requéte précédente par ordre croisant de 1’age, la syntaxe devient :

mysqgl> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 OR
Prenom="JEAN" ORDER BY Age;

e e et e +--—+
| Prenom | Nom |Age |
e e ettt e +--—+
| JEAN-CHRISTOPHE | DE-LA-RUE | 27]
| PIERRE-DAVID |MARTIN | 27
| JEAN | DUPONT | 28]
| CAROLE |[MURCIAN | 44
| JEAN-CHRISTOPHE | JACQUENOD | 54
| JEAN-CHRISTOPHE | DUMOULIN | 54
|OLIVIER | LABONNE-JAYAT | 54|
| JEAN | DUPONT | 54
| PIERRE |[MARTIN | 56|
| SAMUEL | LEVY | 56|
| JEAN | DE-LA-FONTAINE|110]
e e et e +--—+

11 rows in set (0,00 sec)

Pour un affichage par ordre décroissant il suffit d’ajouter DESC a la fin de la
syntaxe :

mysqgl> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 OR
Prenom="JEAN" ORDER BY Age DESC;

| JEAN | DE-LA-FONTAINE|110 |

PIERRE [MARTIN	56	
SAMUEL	LEVY	56
JEAN-CHRISTOPHE	JACQUENOD	54
JEAN-CHRISTOPHE	DUMOULIN	54
[OLIVIER	LABONNE-JAYAT	54
JEAN	DUPONT	54
CAROLE	[MURCIAN	44
JEAN	DUPONT	28]
JEAN-CHRISTOPHE	DE-LA-RUE	27
PIERRE-DAVID [MARTIN	27	
oo oo o1

11 rows in set (0,00 sec)
Pour un tri sur le nom :

mysqgl> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 OR
Prenom="JEAN" ORDER BY Nom;

e e et e +--—+
| Prenom | Nom |Age |
e e et e +--—+
| JEAN | DE-LA-FONTAINE|110]
| JEAN-CHRISTOPHE | DE-LA-RUE | 27]
| JEAN-CHRISTOPHE | DUMOULIN | 54
| JEAN | DUPONT | 28]
| JEAN | DUPONT | 54
| JEAN-CHRISTOPHE | JACQUENOD | 54
OLIVIER	LABONNE-JAYAT	54
SAMUEL	LEVY	56
PIERRE-DAVID	MARTIN	27
PIERRE	[MARTIN	56
CAROLE	[MURCIAN	44
e e et e +--—+

11 rows in set (0,00 sec)

Dans ce dernier cas, le choix de la table de codage des caractéres (UTFS) et la
sensibilité a la casse impacte le tri « alphabétique ».

La limitation avec LIMIT

La syntaxe LIMIT ne sélectionne qu’une partie des résultats de la requéte. La syn-
taxe générale est :

LIMIT début, nb

Ou début est le numéro de I’entrée dans le résultat (0 pour la premicre entrée),
et nb le nombre d’entrées a sélectionner. Voici quelques exemples de syntaxe :

LIMIT 0,5 : les 5 premiéres entrée ;

10

LIMIT 5,3 : de la 6°™ entrée a la 8°™ entrée (3 entrées a
partir de la 6°)

La syntaxe suivante affiche les 5 premicres lignes de la requéte précédente :

mysqgl> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 OR
Prenom="JEAN" ORDER BY Nom LIMIT 0,5;

e e et e +--—+
| Prenom | Nom |Age |
e e et e +--—+
| JEAN | DE-LA-FONTAINE|110]
| JEAN-CHRISTOPHE | DE-LA-RUE | 27|
| JEAN-CHRISTOPHE | DUMOULIN | 54
| JEAN | DUPONT | 28]
| JEAN | DUPONT | 54
e e et e +--—+

5 rows in set (0,00 sec)

Voici les lignes 6 a 8 :

mysqgl> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 OR
Prenom="JEAN" ORDER BY Nom LIMIT 5,3;

e e ettt +--—+
| Prenom | Nom |Age |
e e ettt +--—+
| JEAN-CHRISTOPHE | JACQUENOD | 54]
[OLIVIER | LABONNE-JAYAT| 54|
| SAMUEL | LEVY 56|
e e ettt +--—+

3 rows in set (0,00 sec)

Le filtrage avec HAVING

Cette condition se comporte comme WHERE. La différence est que HAVING
permet de filtrer en utilisant des fonctions comme SUM(), COUNT(), AVG(),
MIN() ou MAX(). Elle s’utilise généralement sur des données regroupées par
GROUP BY. Des exemples de syntaxes sont présentés avec ces fonctions.

Le regroupement avec GROUP BY

Il est possible de regrouper les résultats selon un champ avec GROUP BY. Cette
syntaxe est utilisée avec les fonctions SQL d’agrégations comme AVG(), SUM(),
... Des exemples de syntaxes sont présentés avec ces fonctions.

Les fonctions SQL

Le langage SQL effectue des traitements sur les données via des fonctions. Elles
sont spécifiques aux bases de données et donc trés rapides. Nous n’en présentons

11

que quelques-unes, une liste exhaustive des fonctions SQL est disponible a I’'URL
http://sql.sh/fonctions.

Remarque
Pour des questions de performance, il faut privilégier une fonction SQL, quand elle existe, a
une fonction ou un traitement équivalent en PHP.

Il y a plusieurs catégories de fonctions :
* Les fonction d’agrégat : Elles effectuent un traitement sur la totalité de la table.
C’est par exemple la somme ou la moyenne d’un champ numérique.
* Les fonctions scalaires : Elles travaillent sur chaque entrée de la table. On y
trouve :
4 Les fonctions sur les chalnes de caractéres, comme la conversion en majus-
cules ou minuscules d’un champ texte ;
¢ Les fonctions mathématiques telles que 1’arrondi d’un champ numeérique ;
4 Les fonctions de date et d’heure ;
¢ Les fonctions de chiffrement ;
¢ Diverses fonctions comme le transtypage CAST() ou la conversion CON-
VERT().
Pour cette section, nous utilisons la table « clients » (d’une banque) dont la
structure est présentée sur la figure 10-1.1 et ses enregistrements sur la figure 10-
1.2.

php G C7Serveur: localhost » @ Base de donr =W e
Yl 3 s Afficher 4 Structure saL Rechercher 3¢ Insérer [Exporter L} Importer A
Récentes Préférées # Nom Type Interclassement Attributs Null Défaut Extra
& Nouvelle base de données 11D int(11) Non Aucune AUTO_INCREMENT
~_ | CoursPHP
F < Nouvelle table 2 Nom varchar(255) utf8_general_ci Non Aucune
+_ 1 clients
|
41+ personnes 3 Prenom varchar(255) utf8_general_ci Non Aucune
+_ . information_schema 4 Age int(3) T Qe
4 mysql
. performance_schema 5 Date_Naissance date Oui NULL
S test
6 Etat_Civil enum(Marié', ‘Célibataire' utf8_general_ci Oui NULL
", 'Divorcs’,
7 Nb_Enfants int(2) UNSIGNED Non Aucune
8 Solde float Non Aucune

Figure 10-1.1

Structure de la table clients.

12

ID Nom Prenom Age Date Naissance Etat Civil Nb_Enfants Solde
1 DUPONT JEAN 27 1987-12-28 Marié 2 1200.5
2 JACQUENOD JEAN-CHRISTOPHE 54 1961-02-10 Marié 1 -308.87
3| MURCIAN CAROLE 44 1970-10-20 Célibataire 1| 3548.98
4 LERY JEAN-MICHEL 25 1989-05-07 Marié 2 -18.98
5 DE-LA-RUE JEAN-CHRISTOPHE 23 1991-06-18 Divorcé 0 -27.44
6 MARTIN PIERRE-DAVID 23 1991-08-22 Célibataire 0 206.21
7 | MARTIN PIERRE 56 1959-01-18 Veuf 3 1234.56
8 JACQUENOD FREDERIC 25 1989-11-27 Marié 0 43298
9| JACQUENOD LAURENCE 24 1990-11-01 Marié 0 -203.18
10 DUMOULIN JEAN-CHRISTOPHE 54 1960-08-22 Marié 2 -2186.86
11 LABONNE-JAYAT | OLIVIER 54 1960-09-23 Célibataire 1 -65.98
12 DE-LA-FONTAINE JEAN 110 1905-01-22 Décédé 0 1825.54
13 LEVY SAMUEL 56 | 1959-03-27 Divorcé 3 281.87
14 DE-LA-RUE LAURENCE 25 1989-12-13 Marié 1 2135.98
15 DUPONT JEAN 54 1960-10-15 Veuf 2 123149
16 MARTIN ALBERT 25 1989-08-15 Célibataire 1 213.49

Figure 10-1.2

Enregistrements de la table clients.

Remarque

Il est illogique de conserver un champ «Age» dés lors quil y a un champ
« Date_Naissance ». Cela ne peut que produire des incohérences de données, en plus de
la redondance d’information. Ce champ est maintenu uniquement pour servir de support aux
exemples suivants.

Les fonctions d’agrégat

AVG

La fonction AVG() calcule la moyenne sur un ensemble d’enregistrements. Elle
fournit un résultat sous la forme d’un « champ virtuel » qui n’existe que durant la
requéte, et qu’il est préférable de nommer. Pour cet exemple nous utiliserons le
nom « solde_moyen » :

mysql> SELECT AVG(Solde) AS solde moyen FROM clients;

1 row in set (0,00 sec)

La fonction ROUND(), présente le résultat a la deuxiéme décimale :

mysql> SELECT ROUND (AVG(Solde),2) AS solde_moyen FROM clients;

13

| 1283.35]

1 row in set (0,00 sec)

Avec la syntaxe GROUP BY, il est possible de regrouper le calcul selon un des
champs. Voici la syntaxe précédente présentée selon 1’état civil des clients. L’ état
civil est également affiché pour connaitre le champ utilis¢ pour le regroupement :

mysql> SELECT Etat_Civil, ROUND (AVG(Solde) ,2) AS solde_moyen
FROM clients GROUP BY Etat Civil;

fomm B +
|[Etat Civil |solde moyen|
fomm B +
|Marié | 150.22|
|[Célibataire | 975.67]
|Veuf | 6774.72 |
|Divorcé | 102.21|
| Décédé | 1825.54]
fomm B +

5 rows in set (0,00 sec)

Avec la condition HAVING, il est possible de filtrer le résultat. Voici la syntaxe
précédente ou seuls les soldes moyens supérieurs a 1000 sont affichés :

mysql> SELECT Etat_Civil,ROUND (AVG(Solde) ,2) AS solde_moyen
FROM clients GROUP BY Etat Civil HAVING solde _moyen > 1000;
tomm - tomm +
|[Etat Civil|solde moyen|
tomm - tomm +
|Veuf | 6774.72 |
| Décédé | 1825.54 |
tomm - tomm +
2 rows in set (0,00 sec)

COUNT
La fonction COUNTY() calcule le nombre d’enregistrement dans une table. Voici le
nombre total de clients :

mysgl> SELECT COUNT(*) AS nbclients FROM clients;

1 row in set (0,00 sec)

Voici le nombre total de clients mariés :

mysql> SELECT COUNT (*) AS nbmarié FROM clients WHERE
Etat_Civil='Marié';

14

1 row in set (0,00 sec)
La syntaxe GROUP BY, permet d’afficher le nombre de clients selon leur Age :

mysgl> SELECT Age,COUNT (*) AS nbclients FROM clients GROUP BY

Age;

i +
|Age|nbclients|
i +
| 23] 2]
| 24] 1]
| 25] 4|
| 27] 1]
| 44 1]
| 54| 4]
| 56] 2]
[110] 1]
i +

8 rows in set (0,00 sec)

Avec la condition HAVING, on peut filtrer ce résultat pour n’afficher que le
nombre de clients supérieur a 1 :

mysgl> SELECT Age,COUNT (*) AS nbclients FROM clients GROUP BY
Age HAVING COUNT (*)>1;

i +
|Age|nbclients|
i +
| 23] 2]
| 25] 4|
| 54| 4]
| 56] 2]
i +

4 rows in set (0,00 sec)

Cette syntaxe est identique a
mysgl> SELECT Age,COUNT (*) AS nbclients FROM clients GROUP BY
Age HAVING nbclients>1;

MAX
La fonction MAX() calcule la valeur maximale dans une table. Voici le client
ayant le plus grand solde :

15

mysql> SELECT Nom, ROUND (MAX(Solde),2) AS solde max FROM

clients;

F-———— fomm - +
| Nom | solde max|
F-———— fomm - +
| DUPONT | 12314.87]
F-———— fomm - +

1 row in set (0,00 sec)

MIN
La fonction MIN() calcule la valeur minimale dans une table. Voici le client ayant
le plus petit solde :

mysql> SELECT Nom, ROUND (MIN(Solde),2) AS solde min FROM

clients;

F-———— fomm - +
| Nom |solde min|
F-———— fomm - +
| DUPONT| -2186.86]
F-———— fomm - +

1 row in set (0,00 sec)

SUM
La fonction SUM() calcule la somme d’un champ numérique. La syntaxe suivante
affiche le solde total de tous les clients :

mysql> SELECT ROUND (SUM(Solde),2) AS solde_total FROM clients;

1 row in set (0,00 sec)

Voici le solde total des clients décédés :

mysql> SELECT ROUND (SUM(Solde),2) AS solde_total FROM clients
WHERE Etat_Civil= 'Décédé’' ;

e ittt +
|solde totall
e ittt +
| 1825.54|
e ittt +

1 row in set (0,00 sec)

Voici le solde total des clients selon leur age :

mysql> SELECT Age,ROUND (SUM(Solde),2) AS solde_ total FROM
clients GROUP BY Age;

16

tom - +
|Age|solde totall

e T +
| 23] 178.77]
| 24| -203.18]
| 25] 2763.47]|
| 27 1200.50]
| 44 3548.98|
| 54| 9753.16|
| 56| 1466.43|
[110] 1825.54 |
e T +

8 rows in set (0,00 sec)
Voici le solde total des clients, dépassant 1000, en fonction de leur age :

mysql> SELECT Age,ROUND (SUM(Solde),2) AS solde_total FROM
clients GROUP BY Age HAVING solde_total>1000;

et e it +
|Age|solde total]
TE A ——— R +
| 25] 2763.47]
| 27| 1200.50|
| 44 3548.98|
| 54| 9753.16|
| 56| 1466.43|
[110]| 1825.54|
et e it +

6 rows in set (0,00 sec)

Quelques fonctions sur les chaines de caracteres

Les fonctions sur les chaines de caractéres sont nombreuses. Nous n’en présentons

que quelques unes. Une présentation compléte est disponible a 1I’URL
http://sql.sh/fonctions/chaines-de-caracteres.

CONCAT

C’est la concaténation de chalnes de caractéres. L’exemple suivant concaténe le
«prénom », un espace, et le «nom» dans un seul champ nommé « pre-
nom_nom » :

mysql> SELECT ID, CONCAT (Prenom,' ',6Nom) AS prenom nom,
Date_Naissance FROM clients;

Fom e fom - +
|ID|prenom nom |Date Naissance|
Fom e R ettt +
1]JEAN DUPONT [1987-12-28	
2	JEAN-CHRISTOPHE JACQUENOD	1961-02-10
3	CAROLE MURCIAN [1970-10-20	

17

| 4| JEAN-MICHEL LERY [1989-05-07
| 5|JEAN-CHRISTOPHE DE-LA-RUE|[1991-06-18
| 6|PIERRE-DAVID MARTIN [1991-08-22
|
|

|

|

|

7| PIERRE MARTIN [1959-01-18 |

8 | FREDERIC JACQUENOD 11989-11-27 |

| 9|LAURENCE JACQUENOD 11990-11-01 |
10| JEAN-CHRISTOPHE DUMOULIN |1960-08-22 |
|11 |OLIVIER LABONNE-JAYAT 11960-09-23 |
|12 | JEAN DE-LA-FONTAINE 11905-01-22 |
13| SAMUEL LEVY 11959-03-27 |
|14 | LAURENCE DE-LA-RUE 11989-12-13 |
[15|JEAN DUPONT 11960-10-15 |
|16 | ALBERT MARTIN 11989-08-15 |
R T oo +

16 rows in set (0,00 sec)

LENGTH
C’est la longueur d’une chalne de caractéres. L’exemple suivant affiche la taille du
champ nom de tous les clients :

mysql> SELECT ID,Nom,LENGTH(Nom) AS Taille Nom FROM clients;
i fomm - +

| ID|Nom |Taille Nom|
fmmpm e fmmm +
| 1|DUPONT \ 6|
| 2| JACQUENOD \ 9]
| 3|MURCIAN \ 7|
| 4|LERY \ 4
| 5|DE-LA-RUE \ 9]
| 6|MARTIN \ 6]
| 7|MARTIN \ 6]
| 8| JACQUENOD \ 9]
| 9| JACQUENOD \ 9]
|10 | DUMOULIN \ 8]
|11 | LABONNE-JAYAT | 13
|12 | DE-LA-FONTAINE | 14
|13 |LEVY \ 4
|14 | DE-LA-RUE \ 9]
| 15| DUPONT \ 6|
|16 |MARTIN \ 6]
fmmpm e fmmm +
16 rows in set (0,00 sec)

Cet autre exemple affiche la taille du plus grand nom de la table clients :

mysql> SELECT MAX (LENGTH (Nom)) AS Taille Max Nom FROM clients;

18

1 row in set (0,01 sec)

REPLACE

Cette fonction remplace une chaine par une autre. La syntaxe suivante montre le
résultat du remplacement du texte 'DUPONT' par 'DURAND' dans la colonne
« Nom ». Comme il s’agit d’un SELECT aucun changement n’est effectué.

mysqgl> SELECT ID,Nom,REPLACE (Nom, 'DUPONT', 'DURAND') as
Nouveau Nom FROM clients;

|11 |LABONNE-JAYAT |LABONNE-JAYAT
|12 | DE-LA-FONTAINE | DE-LA-FONTAINE

fom o~ fmm e~ +
| ID|Nom [Nouveau Nom |
fom o~ o~ +
| 1|DUPONT | DURAND \
2	1 JACQUENOD	JACQUENOD
3	MURCIAN	[MURCIAN
4	LERY	LERY
5	DE-LA-RUE	DE-LA-RUE
6	MARTIN	MARTIN
7	MARTIN	[MARTIN
8	JACQUENOD	JACQUENOD
9	1 JACQUENOD	JACQUENOD
10	DUMOULIN	DUMOULIN
\		
\		
13	LEVY	LEVY
14	DE-LA-RUE	DE-LA-RUE
15	DUPONT	DURAND \
16	MARTIN	[MARTIN
fom o~ o~ +

16 rows in set (0,00 sec)

L’exemple montre I’utilisation de REPLACE avec une requéte UPDATE, pour
mettre a jour une partie du prénom.

mysgl> UPDATE clients SET
Prenom=REPLACE (Prenom, 'PIERRE', 'PAUL') WHERE ID=6;
Query OK, 1 row affected (0,00 sec)

Rows matched: 1 Changed: 1 TWarnings: 0

La requéte suivante montre le résultat de cette mise a jour du prénom de
I’utilisateur ayant I’ID 6 qui a été changé de 'PIERRE-DAVID' en 'PAUL-DAVID'.

mysgl> SELECT ID,Nom,Prenom FROM clients;
i Fomm e +

| ID|Nom | Prenom

i Fomm e +

| 1|DUPONT | JEAN \

19

2 | JACQUENOD | JEAN-CHRISTOPHE |

|

| 3 |MURCIAN | CAROLE \
4	LERY	JEAN-MICHEL
5	DE-LA-RUE	JEAN-CHRISTOPHE
6	MARTIN	PAUL-DAVID
7IMARTIN	PIERRE \	
8	JACQUENOD	FREDERIC
91JACQUENOD	LAURENCE \	
[10 | DUMOULIN | JEAN-CHRISTOPHE |

|11 | LABONNE-JAYAT |OLIVIER \
|12 | DE-LA-FONTAINE | JEAN

\
[13|LEVY | SAMUEL |
|14 | DE-LA-RUE | LAURENCE |
| 15| DUPONT | JEAN \
|16 |MARTIN | ALBERT \
Rt ittt e L T +

16 rows in set (0,00 sec)

SUBSTRING

La fonction SUBSTRING retourne une partie de la chaine indiqué. Elle possede

plusieurs syntaxes :

* SUBSTRING(chaine,debut) : Retourne la chaine a partir de début ;

+ SUBSTRING(chaine FROM debut) : Retourne la chaine a partir de début ;

* SUBSTRING(chaine,debut,longueur) : Retourne la chaine a partir de début sur
longueur caractéres ;

* SUBSTRING(chaine FROM debut FOR longueur) : Retourne la chaine a partir
de début sur longueur caracteres ;
L’exemple suivant affiche les quatre premiers caractéres du prénom dans une

nouvelle colonne.

mysgl> SELECT ID,Nom,Prenom,SUBSTRING (Prenom,1,4) as
Prem 4_Caract FROM clients;

tombm e Fommm e tommm e +
| ID|Nom | Prenom |Prem 4 Caract]|
tombm e Fommm e tommm e +
1	DUPONT	JEAN	JEAN
2	JACQUENOD	JEAN-CHRISTOPHE	JEAN
3	MURCIAN	CAROLE	CARO
4	LERY	JEAN-MICHEL	JEAN
5	DE-LA-RUE	JEAN-CHRISTOPHE	JEAN
6	MARTIN	PAUL-DAVID	PAUL
7	MARTIN	PIERRE	PIER
8] JACQUENOD	FREDERIC	FRED	
9] JACQUENOD	LAURENCE	LAUR	
10	DUMOULIN	JEAN-CHRISTOPHE	JEAN
11	LABONNE-JAYAT	OLIVIER	OLIV
12	DE-LA-FONTAINE	JEAN	JEAN

20

[13|LEVY | SAMUEL | SAMU

|
14	DE-LA-RUE	LAURENCE	LAUR
15	DUPONT	JEAN	JEAN
16	MARTIN	ALBERT	ALBE
ot oo e +

16 rows in set (0,00 sec)

LEFT
La fonction LEFT retourne les N caracteéres de gauche (premiers). L’affichage pré-
cédent aurait pu étre obtenu par la syntaxe :

mysql> SELECT ID,Nom,Prenom,LEFT(Prenom,4) as Prem 4 Caract
FROM clients;

RIGHT
La fonction RIGHT retourne les N caractéres de droite (derniers). L’exemple sui-
vant affiche les quatre derniers caractéres du prénom dans une nouvelle colonne.

mysql> SELECT ID,Nom,Prenom,RIGHT (Prenom,4) as Dern 4 Caract
FROM clients;

tombm e Fommm e tommm e +
| ID|Nom | Prenom |Dern 4 Caract|
tombm e Fommm e tommm e +
1	DUPONT	JEAN	JEAN
2	JACQUENOD	JEAN-CHRISTOPHE	OPHE
3	MURCIAN	CAROLE	ROLE
4	LERY	JEAN-MICHEL	CHEL
5	DE-LA-RUE	JEAN-CHRISTOPHE	OPHE
6	MARTIN	PAUL-DAVID	AVID
7	MARTIN	PIERRE	ERRE
8] JACQUENOD	FREDERIC	ERIC	
9] JACQUENOD	LAURENCE	ENCE	
10	DUMOULIN	JEAN-CHRISTOPHE	OPHE
11	LABONNE-JAYAT	OLIVIER	VIER
12	DE-LA-FONTAINE	JEAN	JEAN
13	LEVY	SAMUEL	IMUEL
14	DE-LA-RUE	LAURENCE	ENCE
15	DUPONT	JEAN	JEAN
16	MARTIN	ALBERT	BERT
tombm e Fommm e tommm e +

16 rows in set (0,00 sec)

REVERSE
La fonction REVERSE renverse 1’ordre des caractéres d’une chaine. Voici un
exemple d’inversion des lettres du prénom :

mysql> SELECT ID,Nom,Prenom,REVERSE (Prenom) as Prenom_ retourné
FROM clients;

21

| ID|Nom | Prenom |Prenom_retourné |
e e ettt Fommm e Fom - +
| 1|DUPONT | JEAN |NAEJ

| 2| JACQUENOD | JEAN-CHRISTOPHE | EHPOTSIRHC-NAEJ |
| 3|MURCIAN | CAROLE | ELORAC |
| 4 |LERY | JEAN-MICHEL | LEHCIM-NAEJ

5	DE-LA-RUE	JEAN-CHRISTOPHE	EHPOTSIRHC-NAEJ
6	MARTIN	PAUL-DAVID	DIVAD-LUAP
7	MARTIN	PIERRE	ERREIP
8	JACQUENOD	FREDERIC	CIREDERF
9	1 JACQUENOD	LAURENCE	ECNERUAL
10	DUMOULIN	JEAN-CHRISTOPHE	EHPOTSIRHC-NAEJ
11	LABONNE-JAYAT	OLIVIER	[REIVILO
12	DE-LA-FONTAINE	JEAN	NAEJ

|13 |LEVY | SAMUEL | LEUMAS |
|14 | DE-LA-RUE | LAURENCE | ECNERUAL |
| 15| DUPONT | JEAN |NAEJ

|16 | MARTIN | ALBERT | TREBLA |
e e ettt Fommm e Fom - +

16 rows in set (0,00 sec)

TRIM, LTRIM, RTRIM
La fonction TRIM supprime les caracteres invisibles (espaces, tabulations, retour a
la ligne) au début et en fin de chalne. En voici un exemple :

mysql> SELECT ID,Nom,Prenom,TRIM(Prenom) as Prenom nettoyé
FROM clients;

La fonction LTRIM applique ce traitement a gauche (début) de la chaine. La
fonction RTRIM applique ce traitement a droite (fin) de la chaine.

LPAD, RPAD
La fonction LPAD compléte une chaine de caractére jusqu’a atteindre la taille de-

mandée en ajoutant des caractéres en début de chaine (a gauche). En voici un
exemple :

mysql> SELECT ID,Nom,Prenom,LPAD(Prenom,14,' ') as
Prenom_complété FROM clients;

ot fomm fomm - +
| ID|Nom | Prenom | Prenom complété |
ot fomm fomm - +
1	DUPONT	JEAN \F JEAN	
2	JACQUENOD	JEAN-CHRISTOPHE	JEAN-CHRISTOPH
3	MURCIAN	CAROLE l CAROLE	
4	LERY	JEAN-MICHEL	JEAN-MICHEL
5	DE-LA-RUE	JEAN-CHRISTOPHE	JEAN-CHRISTOPH
6	MARTIN	PAUL-DAVID	PAUL-DAVID
7	MARTIN	PIERRE	PIERRE

22

| 8| JACQUENOD | FREDERIC | FREDERIC

|
9	JACQUENOD	LAURENCE	LAURENCE
10	DUMOULIN	JEAN-CHRISTOPHE	JEAN-CHRISTOPH
11	LABONNE-JAYAT	OLIVIER . OLIVIER	
12	DE-LA-FONTAINE	JEAN . JEAN	
13	LEVY	SAMUEL . SAMUEL	
14	DE-LA-RUE	LAURENCE	LAURENCE
15	DUPONT	JEAN \ JEAN	
16	MARTIN	ALBERT	ALBERT
oo pommm - pommm oo +

16 rows in set (0,00 sec)
La fonction RPAD effectue le méme traitement en ajoutant le caractére de rem-
plissage a droite.

LOWER, LCASE
Cette fonction convertit une chaine en minuscules. LCASE est un alias de LO-
WER. En voici un exemple :

mysgl> SELECT ID,LOWER(Nom),Prenom FROM clients;

fom o~ i +
| ID| LOWER (Nom) | Prenom |
fom o~ i +
1	dupont	JEAN
2]jacquenod	JEAN-CHRISTOPHE	
3	murcian	CAROLE
4	lery	JEAN-MICHEL
5]de-la-rue	JEAN-CHRISTOPHE	
6	martin	PAUL-DAVID
7	martin	PIERRE
8]jacquenod	FREDERIC \	
9]jacquenod	LAURENCE	
[10]dumoulin | JEAN-CHRISTOPHE |

|11]labonne-jayat |OLIVIER |
|12 |de-la-fontaine | JEAN

\
[13]1levy | SAMUEL |
|14 |de-la-rue | LAURENCE \
[15|dupont | JEAN \
|16 |martin | ALBERT |
to—mmmm e Fomm - +

16 rows in set (0,00 sec)

UPPER, UCASE
Cette fonction convertit une chaine en majuscules. UCASE est un alias de UPPER.
En voici un exemple :

mysql> SELECT ID,Nom,Prenom,UPPER(Etat Civil) FROM clients;
ot fomm fomm - +
| ID|Nom | Prenom |[UPPER (Etat Civil) |

23

e Fommm - fommmm - +
| 1|DUPONT | JEAN |MARIE |
| 2| JACQUENOD | JEAN-CHRISTOPHE | MARIE |
| 3|MURCIAN | CAROLE |CELIBATAIRE

4	LERY	JEAN-MICHEL	MARIE
5	DE-LA-RUE	JEAN-CHRISTOPHE	DIVORCE
6	MARTIN	PAUL-DAVID	CELIBATAIRE
7	MARTIN	PIERRE	VEUF
8	JACQUENOD	FREDERIC	MARIE
9	JACQUENOD	LAURENCE	MARIE
10	DUMOULIN	JEAN-CHRISTOPHE	MARIE
11	LABONNE-JAYAT	OLIVIER	CELIBATAIRE
12	DE-LA-FONTAINE	JEAN	DECEDE

|13 |LEVY | SAMUEL | DIVORCE

14	DE-LA-RUE	LAURENCE	MARIE
15	DUPONT	JEAN	VEUF
16	MARTIN	ALBERT	CELIBATAIRE
e Fommm e Fom - +

16 rows in set (0,00 sec)

LOCATE, INSTR
La fonction LOCATE indique la position d’une sous-chaine dans une chaine. Cet
exemple affiche la position du caractére 'C' dans le prénom :

mysgl> SELECT ID,Nom,Prenom,LOCATE('C',Prenom) FROM clients;

| ID|Nom | Prenom | LOCATE ('C', Prenom) |
e Fommm e et et e +
| 1|DUPONT | JEAN | 0
| 2| JACQUENOD | JEAN-CHRISTOPHE | 0 |
| 3|MURCIAN | CAROLE | 1]
| 4|LERY | JEAN-MICHEL \ 8 |
| 5|DE-LA-RUE | JEAN-CHRISTOPHE | 0|
| 6|MARTIN | PAUL-DAVID \ 0
| 7|MARTIN | PIERRE \ 0]
8	JACQUENOD	FREDERIC	8
9	1 JACQUENOD	LAURENCE	7
10	DUMOULIN	JEAN-CHRISTOPHE	0
11	LABONNE-JAYAT	OLIVIER \ 0	
12	DE-LA-FONTAINE	JEAN \ 0	
13	LEVY	SAMUEL	0
14	DE-LA-RUE	LAURENCE \ 7]	
15	DUPONT	JEAN	0
16	MARTIN	ALBERT	0]
e Fommm e et et e +

16 rows in set (0,00 sec)

24

La fonction INSTR est identique. Elle retourne la méme information, mais les
arguments sont inversés. Le résultat précédent peut étre obtenu avec :

mysgl> SELECT ID,Nom,Prenom,INSTR(Prenom,'C') FROM clients;

Les fonctions mathématiques

Il existe beaucoup de fonctions mathématiques comme CONV(), ABS(), PO-
WER(), SQRT(), TRUNCATE(), ROUND() ..., nous n’en présentons que deux.

TRUNCATE
Cette fonction tronque un nombre réel a la décimale indiquée. En voici un
exemple :

mysql> SELECT ID,Nom,Prenom, TRUNCATE (Solde,0) AS Solde_ Entier
FROM clients;

e R ittt fom - fomm - +
| ID|Nom | Prenom |Solde Entier|
fom - fom - fomm - +
| 1|DUPONT | JEAN | 1200
| 2] JACQUENOD | JEAN-CHRISTOPHE | -308|
| 3 |MURCIAN | CAROLE | 3548 |
| 4 |LERY | JEAN-MICHEL | -18]
| 5|DE-LA-RUE | JEAN-CHRISTOPHE | -27]
| 6|MARTIN | PAUL-DAVID | 206
| 7|MARTIN | PIERRE | 1234
| 8] JACQUENOD | FREDERIC | 432
| 9] JACQUENOD | LAURENCE | -203]
|10 | DUMOULIN | JEAN-CHRISTOPHE | -2186]
|11 | LABONNE-JAYAT |OLIVIER \ -65]
|12 | DE-LA-FONTAINE | JEAN | 1825]
|13 | LEVY | SAMUEL | 231
|14 | DE-LA-RUE | LAURENCE | 2135
| 15| DUPONT | JEAN \ 12314 |
|16 | MARTIN | ALBERT | 213
fom - fom - fomm - +

16 rows in set (0,00 sec)

ROUND
Cette fonction arrondit un nombre réel a la décimale indiquée. En voici un
exemple :

mysql> SELECT ID,Nom,Prenom,ROUND (Solde,0) AS Solde Entier
FROM clients;

fom - fom - fomm - +
| ID|Nom | Prenom |Solde Entier|
fom - fom - fomm - +
| 1|DUPONT | JEAN | 1200
| 2] JACQUENOD | JEAN-CHRISTOPHE | -309|
| 3|MURCIAN | CAROLE | 3549

25

4 | LERY | JEAN-MICHEL \

|

5	DE-LA-RUE	JEAN-CHRISTOPHE
6	MARTIN	PAUL-DAVID
7IMARTIN	PIERRE	
8	JACQUENOD	FREDERIC
91JACQUENOD	LAURENCE	
[10 | DUMOULIN | JEAN-CHRISTOPHE |

|11 |LABONNE-JAYAT |OLIVIER \
|12 | DE-LA-FONTAINE | JEAN

\
[13|LEVY | SAMUEL |
14	DE-LA-RUE	LAURENCE
15	DUPONT	JEAN
16	MARTIN	ALBERT
e oo to—mm -

16 rows in set (0,00 sec)

Les dates en SQL

Les types de dates et d’heures

-19]
=27
206
1235]
433
-203]
-2187]
-66]|
1826
232
2136
12315]
213

—————— +

Dans la structure de la table clients présentée précédemment, nous avons utilis¢ un
champ « Date Naissance » de type DATE. Il existe en SQL plusieurs types con-

cernant les dates et heures. En voici une synthése :

* DATE : La date est stockée au format AAAA-MM-1J (Année-Jour-Mois) ;
* TIME : L’heure est stockée au format HH:MM:SS (Heures:Minutes:Secondes) ;
* DATETIME : La date et I’heure sont stockées au format AAAA-MM-JJ

HH:MM:SS ;

« DATETIME : La date et 1’heure sont

AAAAMMIJHHMMSS ;
* YEAR : L’année est stockée au format AAAA ;

Sélection des enregistrements selon une date

stockées au format

La requéte suivante affiche tous les clients dont la date de naissance est postérieure

au 1% janvier 1970 ;

mysql> SELECT ID,Nom,Prenom,Date Naissance FROM clients WHERE

Date_ Naissance >= '1970-01-01';

B i Bt ettt fom - +
| ID|Nom | Prenom |Date Naissance|
B i Bt ettt fom - +
| 1|DUPONT | JEAN [|1987-12-28 |
| 3|MURCIAN | CAROLE [1970-10-20

4	LERY	JEAN-MICHEL [1989-05-07	
5	DE-LA-RUE	JEAN-CHRISTOPHE	1991-06-18
6	MARTIN	PAUL-DAVID [11991-08-22	
8] JACQUENOD	FREDERIC [11989-11-27		

26

| 9] JACQUENOD | LAURENCE [1990-11-01 |
|14 | DE-LA-RUE | LAURENCE [1989-12-13 |
|16 | MARTIN |ALBERT 11989-08-15

fo—mm Bt ettt fom - +
9 rows in set (0,00 sec)

Cette autre requéte affiche les clients née entre le 1% janvier 1970 et le 31 dé-
cembre 1989 ;

mysql> SELECT ID,Nom,Prenom,Date Naissance FROM clients WHERE
Date_ Naissance BETWEEN '1970-01-01' AND '1989-12-31"';

fo—mm B fom - +
| ID|Nom | Prenom |Date Naissance|
fo—mm B R +
1	DUPONT	JEAN [1987-12-28	
3	MURCIAN	CAROLE [1970-10-20	
4	LERY	JEAN-MICHEL	1989-05-07
8] JACQUENOD	FREDERIC [11989-11-27		
14	DE-LA-RUE	LAURENCE [11989-12-13	
16	MARTIN	ALBERT 11989-08-15	
fo—mm B fom - +

6 rows in set (0,00 sec)

Les fonctions de dates et d’heures

Nous présentons dans cette section quelques fonctions de gestion des dates et
heures en SQL. Une Iliste exhaustive est présentée a [I’URL
http://sql.sh/fonctions/date-heure

NOW, CURDATE, CURTIME

La fonction NOW() retourne la date actuelle au format AAAA-MM-JJ
HH:MM:SS. La fonction CURDATE() retourne la date actuelle au format AAAA-
MM-JJ. La fonction CURTIME() retourne la date actuelle au format HH:MM:SS.
Un exemple d’utilisation de la fonction NOW() est présenté avec la fonction
DATEDIFF().

DAY, MONTH, YEAR
Les fonctions DAY(), MONTH() et YEAR() retournent respectivement le jour, le

mois et I’année d’une date. La requéte suivante affiche ’année de naissance des
clients :

mysql> SELECT ID,Nom,Prenom,YEAR(Date Naissance) AS
Année Naissance FROM clients;

e ittt e e fomm e fom e +
| ID | Nom | Prenom |Année Naissance |
e ittt e e fomm e fom e +
| 1|DUPONT | JEAN \ 1987
| 2|1 JACQUENOD | JEAN-CHRISTOPHE | 1961
| 3|MURCIAN | CAROLE \ 1970

27

4 | LERY | JEAN-MICHEL \ 1989

|

| 5|DE-LA-RUE | JEAN-CHRISTOPHE | 1991
| 6|MARTIN | PAUL-DAVID | 1991
| 7IMARTIN | PIERRE | 1959
| 8|JACQUENOD | FREDERIC | 1989
9	JACQUENOD	LAURENCE	1990
10	DUMOULIN	JEAN-CHRISTOPHE	1960
11	LABONNE-JAYAT	OLIVIER	1960
12	DE-LA-FONTAINE	JEAN	1905
[13	LEVY	SAMUEL	1959
14	DE-LA-RUE	LAURENCE	1989
15	DUPONT	JEAN	1960
16	MARTIN	ALBERT	1989
ot oo et +

16 rows in set (0,01 sec)

DATE _FORMAT
Cette fonction présente la date et ’heure selon le format indiqué. En voici un
exemple :

mysgl> SELECT
ID,Nom, Prenom,DATE FORMAT (Date Naissance, '%d/%m/%Y') AS
Naissance FROM clients;

i Fomm e fomm - +
| ID|Nom | Prenom |[Naissance |
i Fomm e fomm - +
1	DUPONT	JEAN 128/12/1987	
2	JACQUENOD	JEAN-CHRISTOPHE	10/02/1961
3	MURCIAN	CAROLE 120/10/1970	
4	LERY	JEAN-MICHEL [07/05/1989	
5	DE-LA-RUE	JEAN-CHRISTOPHE	18/06/1991
6	MARTIN	PIERRE-DAVID [22/08/1991	
7	MARTIN	PIERRE	18/01/1959
8	JACQUENOD	FREDERIC 127/11/1989]	
9	JACQUENOD	LAURENCE [01/11/1990	
10	DUMOULIN	JEAN-CHRISTOPHE [22/08/1960	
11	LABONNE-JAYAT	OLIVIER 123/09/1960	
12	DE-LA-FONTAINE	JEAN 122/01/1905	
13	LEVY	SAMUEL 127/03/1959]	
14	DE-LA-RUE	LAURENCE 113/12/1989	
15	DUPONT	JEAN 115/10/1960	
16	MARTIN	ALBERT 115/08/1989]	
i Fomm e fomm - +

16 rows in set (0,00 sec)

Parmi les nombreux formats, le format « %d/%m/%Y » présente la date au for-
mat JJ/MM/AAAA. Pour I’heure, un format tel que « %Hh%imin%ssec » retourne-
rait 23h54min34sec.

28

DATEDIFF

Cette fonction calcule le nombre de jours entre deux dates. Ainsi la syntaxe
DATEDIFF(NOW(),Date_Naissance) donne 1’dge de la personne en nombre de
jours. Si on divise le résultat par 365, et qu’on prenne la partie entiere, alors on
obtient I’age de la personne (en années). Voici cette syntaxe :

mysgl> SELECT
ID,Nom, Prenom,Age, TRUNCATE ((DATEDIFF (NOW () ,Date_Naissance) /365
),0) AS Age calculé FROM clients;

fo—m e fom e R e +
| ID | Nom | Prenom |Age|Age calculé |
fo—m e fom e R e +
| 1|DUPONT | JEAN | 27| 271
| 2] JACQUENOD | JEAN-CHRISTOPHE| 54| 54
| 3|MURCIAN | CAROLE | 44 44
| 4|LERY | JEAN-MICHEL | 25] 25]
| 5|DE-LA-RUE | JEAN-CHRISTOPHE| 23] 23]
| 6|MARTIN | PAUL-DAVID | 23] 23]
| 7|MARTIN | PIERRE | 56| 56|
| 8] JACQUENOD | FREDERIC | 25| 25]
| 9] JACQUENOD | LAURENCE | 24 24
|10 | DUMOULIN | JEAN-CHRISTOPHE| 54| 54
|11 | LABONNE-JAYAT |OLIVIER | 54 54
|12 | DE-LA-FONTAINE | JEAN [110] 110
|13 |LEVY | SAMUEL | 56| 56|
|14 | DE-LA-RUE | LAURENCE | 25] 25]
| 15| DUPONT | JEAN | 54 54|
|16 | MARTIN | ALBERT | 25] 25]
fo—m e fom e R e +

16 rows in set (0,00 sec)

Remarque

Ce calcul montre qu'il est inutile de conserver une colonne « Age », puisqu’il peut étre dé-
duit de la date de naissance. C’est méme une erreur, car I'dge change selon la date du
moment, seule la date de naissance est immuable dans le temps. Seule la date de nais-
sance doit étre présente dans la table clients.

Les fonctions MySQL d’information

MySQL propose quelques fonctions retournant des informations sur les derniéres
opérations, sur les bases de données ou les tables.

Information sur MySQL, les utilisateurs et la base de données

VERSION

29

Cette fonction retourne une chaine de caractére UTF8 indiquant la version de
MySQL. En voici un exemple :

mysql> SELECT VERSION();

oo +
| VERSION () |
oo +
[5.6.21 |
oo +

1 row in set (0,00 sec)

USER, SYSTEM USER, SESSION_USER

Cette fonction retourne une chaine de caractére UTF8 indiquant quel est
I’utilisateur et le nom de I’ordinateur client utilis€ pour la connexion. USER(),
SYSTEM_USER() ou SESSION USER() sont des synonymes. En voici un
exemple :

mysql> SELECT USER() ;

fom - +
|USER () |
fom - +
|root@localhost |
fom - +

1 row in set (0,01 sec)

CURRENT _USER

Cette fonction retourne une chaine de caractere UTF8 indiquant quels sont
I’utilisateur et le nom de I’ordinateur que le serveur utilise pour identifier le client.
La valeur peut étre différente de USER().

SCHEMA, DATABASE

Cette fonction retourne une chaine de caractére UTF8 indiquant la base de données
courante ou NULL si aucune base de données n’est utilisée. SCHEMA() ou DA-
TABASE() sont des synonymes. En voici un exemple :

mysgl > SELECT DATABASE () ;

fom - +
| DATABASE () |
fom - +
|coursphp |
fom - +

1 row in set (0,00 sec)

CONNECTION_ID
Cette fonction retourne un numéro entier, identifiant unique de connexion. En voici
un exemple :

mysgl> SELECT CONNECTION ID();

30

| CONNECTION ID() |

1 row in set (0,00 sec)

BENCHMARK
Cette fonction exécute « nb » fois le traitement « expression ». Elle évalue la per-
formance de MySQL. En voici un exemple :

mysgl> SELECT BENCHMARK (1000000,ENCODE ('bonjour','au
revoir'));

it il LR R e e +
| BENCHMARK (1000000, ENCODE ('bonjour', 'au revoir')) |
it il LR L PP +
| 0]
it il LR L PP +

1 row in set (0,13 sec)

CHARSET
Cette fonction indique le jeu de caractéres utilisé par I’argument. Appliquée sur un
texte sans accents, elle affiche la table par défaut. En voici deux exemples :

mysgl> SELECT CHARSET('bonjour');

Fmm - +
| CHARSET ('bonjour') |
Fmm - +
|utfs |
Fmm - +

1 row in set (0,00 sec)

mysgl> SELECT CHARSET (CONVERT ('bonjour' USING latinl));

e +
| CHARSET (CONVERT ('bonjour' USING latinl)) |
e +
|latinl

e +

1 row in set (0,00 sec)

COERCIBILITY

Cette fonction indique la coercibilité de la chaine en argument. Cela définit quel
jeu de caractéres serait utilisé en cas de regroupement de deux résultats comme par
exemple avec la clause UNION. La valeur de coercibilité la plus faible sera utilisée
comme référence, et son jeu de caracteéres sera prioritaire pour la conversion du
résultat final. Les valeurs retournées sont :

* 0: Le jeu de caracteres est défini explicitement, via une clause COLLATE ;

31

* 1: Aucun jeu de caracteres a utiliser en particulier. Les chaines sont concaténées
avec différents jeux de caracteres ;

» 2 : Le jeu de caracteres est implicite, il est défini par la valeur de la colonne ;

* 3: Si argument est une constante systeme. Par exemple avec la fonction
USER() ;

* 4 : Dans le cas d’une chaine littérale ;

* 5: A ignorer. Par exemple avec une valeur comme NULL.
En voici des exemples :

mysgl> SELECT COERCIBILITY('bonjour');

o - +
| COERCIBILITY ('bonjour') |
o - +
| 4|
o - +

1 row in set (0,00 sec)

mysql> SELECT COERCIBILITY (USER()) ;

o +
| COERCIBILITY (USER()) |
o +
| 3]
o +

1 row in set (0,00 sec)

mysqgl> SELECT COERCIBILITY ('bonjour' COLLATE utf8 general ci);

e et i e e +
|COERCIBILITY ('bonjour' COLLATE utf8 general ci) |
e et i e e +
| 0]
e et it P e +

1 row in set (0,00 sec)

COLLATION

Cette fonction indique le jeu de caractéres (collation) utilisé pour la chaine en ar-
gument. La clause SQL COLLATE redéfinit ponctuellement le jeu de caractéres
(collation) a utiliser par exemple pour une comparaison. En voici des exemples :

mysql> SELECT Nom COLLATE utf8 spanish ci AS Noml FROM
personnes ORDER BY Noml;

| DE-LA-FONTAINE |
| DE-LA-RUE |
| DE-LA-RUE |
| DUMONTEL |
| DUMOULIN |

32

| DUPONT

| DUPONT

| JACQUENOD
| JACQUENOD
| JACQUENOD
| KACZMA

| LABONNE-JAYAT
| LERY
|LEVY
|MARTIN
|[MARTIN
|MARTIN
|[MURCIAN

18 rows in set (0,01 sec)
mysgl> SELECT COLLATION ('bonjour');

fmm e - +
| COLLATION ('bonjour'") |
fmm e - +
[utf8 general ci |
fmm e - +

1 row in set (0,00 sec)

mysql> SELECT COLLATION(latinl'bonjour');

e et L +
|COLLATION(latinl'bonjour') |
e et L +
[latinl swedish ci |
e et L +

1 row in set (0,00 sec)

Information sur les derniéres opérations

FOUND_ROWS

Cette fonction retourne un entier correspondant au nombre de lignes trouvées dans
la requéte SELECT précédente avec 1’option SQL_CAL FOUND ROWS. En
voici un exemple :

mysql> SELECT SQL CALC_FOUND_ROWS * FROM personnes WHERE Age >
40 LIMIT 10;

Fom o Fomm - +-——+
| ID|Nom | Prenom |Age |
Fom o Fomm - +-——+
| 2| JACQUENOD | JEAN-CHRISTOPHE| 54|
| 3|MURCIAN | CAROLE | 44
| 7|MARTIN | PIERRE | 56|
| 10| DUMOULIN | JEAN-CHRISTOPHE| 54|
|11 | LABONNE-JAYAT |OLIVIER | 54

33

|12 | DE-LA-FONTAINE | JEAN [110]
|13 | LEVY | SAMUEL
| 15| DUPONT | JEAN | 54|
fom - fom - +-——1
8 rows in set (0,00 sec)

mysqgl> SELECT FOUND ROWS () ;

R +
| FOUND_ROWS () |
Fomm e +
| 81
R +

1 row in set (0,00 sec)

ROWS_COUNT

Cette fonction retourne un entier correspondant au nombre de lignes changges,
supprimées ou insérées par la derni¢re instruction UPDATE, DELETE ou IN-
SERT. En voici un exemple :

mysql> UPDATE comptes bancaires SET Solde=Solde-100 WHERE
Solde>200;

Query OK, 23 rows affected (0,00 sec)

Rows matched: 23 Changed: 23 Warnings: 0

mysql> SELECT ROW_COUNT () ;

tom +
|ROW_COUNT () |
tomm +
| 23]
tom +

1 row in set (0,00 sec)

LAST INSERT ID
Cette fonction retourne le numéro du premier indice AUTOINCREMENT utilisé
lors de la derniére insertion de donnée. En voici un exemple :

mysgl> SELECT * FROM personnes;

to—mmmm e Fomm - +-——+
| ID|Nom | Prenom |Age |
to—mmmm e Fomm - +-——+
| 1|DUPONT | JEAN | 28]
| 2| JACQUENOD | JEAN-CHRISTOPHE| 54|
| 3|MURCIAN | CAROLE | 44
4	LERY	JEAN-MICHEL 25	
5	DE-LA-RUE	JEAN-CHRISTOPHE	27
6	MARTIN	PIERRE-DAVID	27
7	MARTIN	PIERRE	56
8	JACQUENOD	FREDERIC	25]

34

| 9|1 JACQUENOD | LAURENCE | 24
|10 | DUMOULIN | JEAN-CHRISTOPHE| 54|
|11 | LABONNE-JAYAT |OLIVIER | 54
|12 | DE-LA-FONTAINE | JEAN [110]
|13 | LEVY | SAMUEL | 56|
|14 | DE-LA-RUE | LAURENCE | 25]
| 15| DUPONT | JEAN | 54
|16 | MARTIN | ALBERT | 25|
B e ittt fom - +-——1
16 rows in set (0,00 sec)

mysgl> INSERT INTO personnes (Nom,Prenom,Age) VALUES
('KACZMA', 'HELENE',52), ('DUMONTEL', 'FRANCK',23) ;

Query OK, 2 rows affected (0,00 sec)
Records: 2 Duplicates: 0 Warnings: 0
mysql> SELECT LAST_INSERT_ID();

R +

|LAST INSERT ID() |

R +

| 17]

R +

1 row in set (0,00 sec)

mysql> SELECT * FROM personnes;

B i +-——+
| ID|Nom | Prenom |Age |
B i +-——+
| 1|DUPONT | JEAN | 28]
| 2| JACQUENOD | JEAN-CHRISTOPHE| 54|
| 3|MURCIAN | CAROLE | 44
4	LERY	JEAN-MICHEL	25
5	DE-LA-RUE	JEAN-CHRISTOPHE	27
6	MARTIN	PIERRE-DAVID	27
7	MARTIN	PIERRE	56
8	JACQUENOD	FREDERIC	25
9	1 JACQUENOD	LAURENCE	24
10	DUMOULIN	JEAN-CHRISTOPHE	54
11	LABONNE-JAYAT	OLIVIER	54
12	DE-LA-FONTAINE	JEAN [110]	
13	LEVY	SAMUEL	56
14	DE-LA-RUE	LAURENCE	25
15	DUPONT	JEAN	54
16	MARTIN	ALBERT	25
17	KACZMA	HELENE	52
18	DUMONTEL	FRANCK	23]
B i +-——+
18 rows in set (0,00 sec)

35

Les jointures entre tables

Le langage SQL permet la mise en relation de tables via un champ commun a tra-
vers la jointure. Pour sa mise en ceuvre, nous modifions la table des clients d’une
banque, utilisée précédemment, afin que le solde des comptes bancaires soit calculé
a partir d’une autre table de comptes des clients.

Les tables support

Voici la nouvelle structure des tables utilisées pour cette section. Deux tables sont
créées : « clients bancaires » et « comptes_bancaires ».

mysql> SHOW TABLES;

Iclients
|clients_bancaires
| comptes bancaires
|personnes

4 rows in set (0,00 sec)

La table « clients_bancaires »

La table « clients bancaires » contient la liste des clients de la banque. Elle est
créée a partir de la table « clients » aprés avoir supprimé les colonnes « Age » et
« Solde ». Sa structure est présentée a la figure 10-1.3 et ses enregistrements a la
figure 10-1.4.

Nom Type Interclassement Attributs Null Défaut Extra
11D _Cit int(11) UNSIGNED Non Aucune AUTO_INCREMENT
2 Nom varchar(255) utf8_general_ci Non Aucune
3 Prenom varchar(255) utf8_general_ci Non Aucune
4 Date_Naissance date Oui NULL
5 Etat_Civil enum('Marié', 'Célibataire', 'Veuf', 'Divorcé', 'D utf8_general_c Oui NULL
6 Nb_Enfants int(2) UNSIGNED Non Aucune
Figure 10-1.3

Structure de la table clients_bancaires.

36

ID_Cit Nom Prenom Date_Naissance Etat Civil Nb_Enfants
1| DUPONT JEAN 1987-12-28 Marié 2
2 JACQUENOD JEAN-CHRISTOPHE 1961-02-10 Marié 1
3| MURCIAN CAROLE 1970-10-20 Célibataire 1
4 LERY JEAN-MICHEL 1989-05-07 Marié 2
5 DE-LA-RUE JEAN-CHRISTOPHE | 1991-06-18 Divorcé 0
6 MARTIN PAUL-DAVID 1991-08-22 Célibataire 0
7 MARTIN PIERRE 1959-01-18 Veuf 3
8 JACQUENOD FREDERIC 1989-11-27 Marié 0
9 JACQUENOD LAURENCE 1990-11-01 Marié 0
10 DUMOULIN JEAN-CHRISTOPHE 1960-08-22 Marié 2
11 LABONNE-JAYAT OLIVIER 1960-09-23 Célibataire 1
12 DE-LA-FONTAINE JEAN 1905-01-22 Décédé 0
13 LEVY SAMUEL 1959-03-27 Divorcé 3
14 DE-LA-RUE LAURENCE 1989-12-13 Marié 1
15 DUPONT JEAN 1960-10-15 Veuf 2
16 MARTIN ALBERT 1989-08-15 Célibataire 1
17 ROUSSE JACQUES 1990-11-05 Célibataire 0

Figure 10-1.4

Enregistrements de la table clients_bancaires.
La table « comptes_bancaires »
La table « comptes_bancaires » contient les champs suivants :
. ID_Cpt : Un identifiant unique interne du compte ;
. Agence : Le code de I’agence bancaire, sur 5 caractéres alphanumériques ;
. Numero : Le numéro du compte bancaire, sur 7 caractéres alphanumériques ;
. Type : le type du compte : liste de type comme Compte Dépots, Livret A, ...
. Libelle : Le libell¢ du compte ;
. ID_CIlt : L’identifiant du client dans la table « clients_bancaires » ;
. Solde : Le solde restant sur ce compte bancaire.

~N N R W~

Remarque

Le numéro de compte devrait étre unique. Cependant, pour une présentation qui différencie
le solde actuel avec le solde potentiel, la carte bancaire a débit différée est présentée a part
du compte, mais posséde le méme numéro de compte. L'unicité du numéro de compte n’est
donc pas possible avec cette modélisation.

La figure 10-1.5 présente sa structure, et la figure 10-1.6, une partie de ses enre-
gistrements.

37

Nom Type Interclassement Attributs Null Défaut Extra

11D _Cpt int(11) UNSIGNED Non Aucune AUTO_INCREMENT
2 Agence varchar(5) utf8_general_ci Non Aucune

3 Numero varchar(7) utf8_general_ci Non Aucune

4 Type enum('Compte_Dépéts', 'Carte_Différé’, 'Livret_A', utf8_general_ci Oui NULL

5 Libelle varchar(30) utf8_general_ci Non Aucune

6 ID_CIt int(11) UNSIGNED Non Aucune

7 Solde float Non Aucune

Figure 10-1.5

Structure de la table comptes_bancaires.

ID_ Cpt Agence Numero Type Libelle ID_Cit Solde
100602 165143P | Compte_Dépéts Compte de dépbts 1 550.98
2 00602 165143P Carte_Différé Carte a débit différé 1 -115.8
3| 00602 116476Q | Livret_A Livret A 1 765.32
4 00523 025123R Compte_Dépdts Compte de dépbts 2 -140.17
5 00523 025123R | Carte_Différé Carte a débit différé 2 -200
6 00523 790327V Livret_Banque Compte sur Livret 2 31.3
7 | 00602 154123P Compte_Dépbts Compte de dépdts 3| 3185.08
8 00602 154123P Carte_Difféeré Carte a débit différé 3 -104.1
9 00602 102476Q | Livret_ A Livret A 3 120

10 00602 921029R Livret_Banque Compte sur Livret 3 50
1100602 413621M | Livret_Jeune Livret Jeune 3 298
12 00521 032154P Compte_Dépodts Compte de dépots 4 -688.98
13 00521 139390R | Livret_Banque | Compte sur Livret 4 50
14 00521 321747M Livret_Jeune Livret Jeune 4 500
15| 00521 002551B | Livret_Dév_Dur Livret de Dév. Durable 4 120

Figure 10-1.6

Enregistrements de la table comptes_bancaires.

Voici I’ensemble de ses enregistrements. Certains libellés ont été modifiés ou
tronqués pour une meilleure lisibilité.

mysql> SELECT * FROM comptes_bancaires;

fo— - fomm - e Fom - Fom - +
|ID |Agenc|Numero |Type | Libelle |ID |Solde
ICptle V \ | [Clt] |
fo— - fomm - e Fom - Fom - +
| 1100602|165143P|Compte Dépdts |[Compte de dépd| 1] 550.98]
| 2100602|165143P|Carte Différé |[Carte débit di| 1] -115.8]|
| 3100602[116476Q|Livret A |Livret A | 1] 765.32]
| 4100523|025123R|Compte Dépdts |[Compte de dépd| 2| -140.17]|
| 5100523|025123R|Carte Différé |[Carte débit di| 2| -200|
| 6100523790327V |Livret Banque |Compte sur Liv| 2] 31.3]
|

7100602|154123P|Compte Dépdts |Compte de dépd| 3| 3185.08]

38

8100602|154123P|Carte Différé |Carte débit di| 3| -104.1|

91006021102476Q|Livret A |[Livret A | 3] 120
101006021921029R|Livret Banque |Compte sur Liv| 3| 50|
111006021413621M|Livret Jeune |Livret Jeune | 3| 298|
12100521]032154P|Compte Dépdts |Compte de dépd| 4| -688.98]|
131005211139390R|Livret Banque |Compte sur Liv| 4| 50|
14100521|321747M|Livret Jeune |Livret Jeune | 4| 5001
15100521|002551B|Livret Dév Dur|Livret Dév.Dur| 4| 120

16100523|123456J|Compte Dépdts |[Compte de dépd| 5| 94.68|
17100523|123456J|Carte Différé |[Carte débit di| 5| -122.12]
18100523 |615243H|Compte Dépdts |Compte de dépd| 6] 406.21]|
19100523 |615243H|Carte Différé |[Carte débit di| 6] =200
201005211062332P|Compte Dépdts |Compte de dépd| 7| 1790.22]
211005211062332P|Carte Différé |Carte débit di| 7| -555.66]
221005211889261D|Compte Dépdts |Compte de dépd| 8| 394.87]
231005211889261D|Carte Différé |Carte débit di| 8| -552.87]
241005211009060K|Livret A |[Livret A | 8] 590.98]
251005211545823%Z |Compte Dépdts |Compte de dépd| 9| -679.08]
261005211545823%Z|Carte Différé |Carte débit di| 9| -276.21]

271005211104721W|Livret A |Livret A | 9] 200
28100521 |921116A|Livret Banque |Compte sur Liv| 9| 52.11|
291005211415921B|Livret Jeune |Livret Jeune | 9] 400 |
301005211812005Q|Livret Dév Dur|Livret Dév.Dur| 9] 100

-2186.86|
321005231823452N|Carte Différé |[Carte débit di| 10| 0l
331005231238245E|Compte Dépdts |Compte de dépd| 11| 234.02]
341005231238245E|Carte Différé |[Carte débit di| 11| -300|

351006021458263T|Compte Dépdts |Compte de dépd| 12| 1825.54]
361005231904161A|Compte Dépdts |Compte de dépd| 13| 12.09]|
371005231904161A|Carte Différé |Carte débit di| 13| -212.98]

381005231219071L|Livret A |[Livret A | 13| 432.76]
391005211045123P|Compte Dépdts |Compte de dépd| 14| 275.7]
401005211045123P|Carte Différé |Carte débit di| 14| -104.1]
411005211014276Q|Livret A |[Livret A | 141 1032.47]
421005211290129R|Livret Banque |Compte sur Liv| 14| 31.3]
431005211146321M|Livret Jeune |Livret Jeune | 14| 818.38]
441005211401002B|Livret Dév Dur|Livret Dév.Dur| 14| 82.23|
45]1005231987123P|Compte Dépdts |Compte de dépd| 15| 4572.1]
461005231987123P|Carte Différé |Carte débit di| 15[-2987.65]
471005231207275Q|Livret A |[Livret A | 15] 2500
481005231297820R|Livret Banque |Compte sur Liv| 15| 5628.34]
491005231245421M|Livret Jeune |Livret Jeune | 15] 1600

501005231502014B|Livret Dév Dur|Livret Dév.Dur| 15| 1002.11]

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| 31100523|823452N|Compte Dépdts |[Compte de dépd| 10|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| 51100602|004452N|Compte Dépdts |[Compte de dépd| 16| 363.49]|
|
|
|

521006021004452N|Carte Différé |Carte débit di| 16| -150|
53100602]084852A|Compte Dépdts |Compte de dépd| 26| 665.29]
541006021084852A|Carte Différé |Carte débit di| 26| -320|
fo— - fomm - e Fom - Fom - +

39

54 rows in set (0,00 sec)

Relation entre les tables

La colonne « ID_Clt » de la table « comptes bancaires » met en relation cette table
avec la table « clients_bancaires » dans laquelle « ID_ClIt » est la clef identifiant le
propriétaire du compte (figure 10-1.7). Cet identifiant donne accés a toutes les in-
formations du propriétaire, son nom, son prénom, sa date de naissance, dans la
table « clients_bancaires ». La jointure met en relation ces deux tables et recherche
des informations sur I’une ou sur ’autre.

| comptes_bancaires v
ID_Cpt INT(11)
Agence VARCHAR(5)
Numero VARCHAR(7)
Type ENUM(...)
Libelle VARCHAR(30) | clients_bancaires v
ID_CIt INT(11) @—— . |D_CIt INT(11)
Solde FLOAT Nom VARCHAR(255)
Prenom VARCHAR(255)
v Date_Naissance DATE
PRIMARY Etat_Civil ENUM(...)
Nb_Enfants INT(2)
v
PRIMARY
Figure 10-1.7

Relation entre les tables clients_bancaires et comptes_bancaires.

Les types de jointure

Il existe deux types de jointures :

* Les jointures internes : Elles ne sélectionnent que les données qui possedent une
correspondance entre les deux tables. Les éléments absents dans I’une des tables
n’apparaissent pas dans le résultat de la requéte ;

C’est le cas de JACQUES ROUSSE ayant comme ID_ClIt la valeur 17 dans la
table « Clients_bancaires » et qui n’a aucun compte bancaire. Son identifiant
n’apparait pas dans la colonne ID_Clt de la table « Comptes_Bancaires ».

De méme les comptes bancaires ayant I’ID Cpt N°53 et 54 ont comme proprié-
taire le client N°26 qui est absent de la table « Clients_bancaires ».

* Les jointures externes : Elles sélectionnent toutes les données, méme celles qui
n’ont aucune correspondance dans 1’autre table.

Mise en ceuvre de la jointure interne

Avec WHERE
La syntaxe suivante affiche pour chaque compte bancaire, le nom et le prénom du
client ainsi que le libellé du compte bancaire.

40

Il est préférable d’identifier clairement la table de chaque champ. Ainsi le nom et
le prénom du client se notent respectivement « clients bancaires.Nom » et
« clients_bancaires.Prenom», et le libellé du compte se note
« comptes_bancaires.libelle ». De cette maniére, il n’y a aucune ambiguité sur la
table a utiliser, méme avec un méme nom de champ utilisé dans les deux tables.

Le FROM est suivi de la liste des tables a utiliser. La clause WHERE indique les
champs a mettre en correspondance.

Remarque
L’identifiant ID_CIt, peut se nommer différemment entre les deux tables puisque c'est la
clause WHERE qui indique la relation a prendre en compte.

Voici la requéte SQL et son résultat :

mysgl> SELECT
clients_bancaires.Nom,clients_bancaires.Prenom,comptes_bancair
es.libelle,comptes_bancaires.Solde FROM clients_bancaires,
comptes_bancaires WHERE

clients_bancaires.ID Clt=comptes_bancaires.ID_Clt;

e ettt e fmm - fomm - fommm - +
| Nom | Prenom |[libelle |Solde |
e ettt e e i e fomm - fommm - +
| DUPONT | JEAN |Compte de dépd| 550.98]
| DUPONT | JEAN |Carte débit di| -115.8]
| DUPONT | JEAN |[Livret A | 765.32|
| JACQUENOD | JEAN-CHRISTOPHE | Compte de dépd| -140.17]
| JACQUENOD | JEAN-CHRISTOPHE |Carte débit di| =200 |
| JACQUENOD | JEAN-CHRISTOPHE |Compte sur Liv]| 31.3]
|MURCIAN | CAROLE |Compte de dépd| 3185.08]
|[MURCIAN | CAROLE |Carte débit di| -104.1|
|[MURCIAN | CAROLE |Livret A | 120]
|[MURCIAN | CAROLE |Compte sur Liv| 50
|[MURCIAN | CAROLE |Livret Jeune | 298|
| LERY | JEAN-MICHEL |Compte de dépd| -688.98]
| LERY | JEAN-MICHEL |Compte sur Liv| 50|
| LERY | JEAN-MICHEL |Livret Jeune | 500 |
| LERY | JEAN-MICHEL |Livret Dév.Dur| 120]
| DE-LA-RUE | JEAN-CHRISTOPHE | Compte de dépd| 94.68|
| DE-LA-RUE | JEAN-CHRISTOPHE |Carte débit di| -122.12]
|MARTIN | PAUL-DAVID |Compte de dépd| 406.21 |
|MARTIN | PAUL-DAVID |Carte débit di| =200 |
|MARTIN | PIERRE |Compte de dépd| 1790.22]
|MARTIN | PIERRE |Carte débit di| -555.66]
| JACQUENOD | FREDERIC |Compte de dépd| 394.87]
| JACQUENOD | FREDERIC |Carte débit di| -552.87|
| JACQUENOD | FREDERIC |Livret A | 590.98|
| JACQUENOD | LAURENCE |Compte de dépd| -679.08]
| JACQUENOD | LAURENCE |Carte débit di| -276.21|

41

| JACQUENOD | LAURENCE |Livret A | 200

| JACQUENOD | LAURENCE |Compte sur Liv| 52.11|
| JACQUENOD | LAURENCE |Livret Jeune | 400 |
| JACQUENOD | LAURENCE |Livret Dév.Dur| 100]
| DUMOULIN | JEAN-CHRISTOPHE | Compte de dépd|-2186.86]
| DUMOULIN | JEAN-CHRISTOPHE |Carte débit di| 0
| LABONNE-JAYAT |OLIVIER |Compte de dépd| 234.02|
| LABONNE-JAYAT |OLIVIER |Carte débit di| -300|
| DE-LA-FONTAINE | JEAN |Compte de dépd| 1825.54]
| LEVY | SAMUEL |Compte de dépd| 12.09]
| LEVY | SAMUEL |Carte débit di| -212.98|
| LEVY | SAMUEL |Livret A | 432.76 |
| DE-LA-RUE | LAURENCE |Compte de dépd| 275.7]
| DE-LA-RUE | LAURENCE |Carte débit di| -104.1|
| DE-LA-RUE | LAURENCE |[Livret A | 1032.47|
| DE-LA-RUE | LAURENCE |Compte sur Liv| 31.3]
| DE-LA-RUE | LAURENCE |[Livret Jeune | 818.38|
| DE-LA-RUE | LAURENCE |Livret Dév.Dur| 82.23|
| DUPONT | JEAN |Compte de dépd| 4572.1]
DUPONT	JEAN	Carte débit di	-2987.65]
DUPONT	JEAN	Livret A	2500
DUPONT	JEAN	Compte sur Liv	5628.34
DUPONT	JEAN	Livret Jeune	1600
DUPONT	JEAN	[Livret Dév.Dur	1002.11
MARTIN	ALBERT	Compte de dépd	363.49]
MARTIN	ALBERT	Carte débit di	=150
Fom - fmm - fomm - fommm - +

52 rows in set (0,00 sec)

Calculons maintenant le solde de chaque client. Travaillons d’abord sur la table
« comptes_bancaires », en affichant le total du solde par numéro de client grace
aux fonctions SUM() et ROUND() associées a la clause GROUP BY.

mysql> SELECT ID_Clt,ROUND (SUM(Solde),2) AS Solde Total FROM
comptes_bancaires GROUP BY ID Clt;

Fo—m——- tomm - +
|ID Clt|Solde Total]
Fo—m——- tomm - +
| 1] 1200.50]
| 2| -308.87]
| 31 3548.98]|
| 4| -18.98]|
| 51 -27.44|
| 6l 206.21]|
| 7| 1234.56|
| 8| 432.98]|
| 91 -203.18]
| 10| -2186.86]
| 111 -65.98]|

42

12| 1825.54 |

|

| 13] 231.87]|
| 14 2135.98]
| 15] 12314.90]
| 16| 213.49|
| 26| 345.29|
o tommm oo +

17 rows in set (0,00 sec)

Réécrivons ensuite cette requéte en précisant le nom de la table devant le nom de
chaque champ :

mysgl> SELECT
comptes_bancaires.ID Clt,ROUND (SUM(comptes bancaires.Solde),2)
AS Solde Total FROM comptes_bancaires GROUP BY
comptes_bancaires.ID Clt;

Si la base de données n’a pas été sélectionnée auparavant (USE CoursPHP;), on
I’indique explicitement :

mysgl> SELECT

CoursPHP.comptes_bancaires.ID_Clt,ROUND (SUM(CoursPHP.comptes b
ancaires.Solde) ,2) AS Solde Total FROM
CoursPHP.comptes_bancaires GROUP BY
CoursPHP.comptes_bancaires.ID Clt;

Ces deux syntaxes affichent le méme résultat !

Une fois ce résultat obtenu, il suffit d’ajouter le nom et le prénom du client pour
chaque identifiant ID CIt, en indiquant de le chercher dans la table
« clients_bancaires ». Cela s’obtient en indiquant le nom de la table devant le nom
du champ et en ajoutant le nom de la table dans la liste de la clause FROM. La
clause WHERE effectue la jointure en mettant en relation les champs « ID_Clt »
des deux tables. La syntaxe devient :

mysgl> SELECT

comptes_bancaires.ID Clt,clients_bancaires.Nom,clients_bancair
es.Prenom,ROUND (SUM(comptes_bancaires.Solde) ,2) AS Solde_Total
FROM comptes_bancaires,clients bancaires WHERE
comptes_bancaires.ID Clt=clients_bancaires.ID_Clt GROUP BY
comptes_bancaires.ID Clt;

F-———— fom e~ Fom - Fomm - +
|[ID Clt|Nom | Prenom |Solde Totall
F-———— fom e~ i Fomm - +
| 1| DUPONT | JEAN | 1200.50]
| 2| JACQUENOD | JEAN-CHRISTOPHE | -308.87]
| 3 |MURCIAN | CAROLE \ 3548.98|
| 4| LERY | JEAN-MICHEL \ -18.98|
| 5| DE-LA-RUE | JEAN-CHRISTOPHE | -27.44]
| 6 | MARTIN | PAUL-DAVID | 206.21|

43

| 7 |MARTIN | PIERRE | 1234.56
| 8 | JACQUENOD | FREDERIC | 432.98]
| 9| JACQUENOD | LAURENCE | -203.18]
| 10 | DUMOULIN | JEAN-CHRISTOPHE | -2186.86
| 11| LABONNE-JAYAT |OLIVIER | -65.98]
| 12 | DE-LA-FONTAINE | JEAN | 1825.54
| 13|LEVY | SAMUEL | 231.87]
| 14| DE-LA-RUE | LAURENCE | 2135.98]
| 15| DUPONT | JEAN | 12314.90]
| 16 |[MARTIN | ALBERT | 213.49]
o e et oo tommm oo +

16 rows in set (0,00 sec)

Cette syntaxe peut étre simplifiée par l’utilisation d’alias via la clause AS,
comme « cb » pour représenter la table « comptes bancaires », et « ¢l » pour indi-
quer la table « clients_bancaires » dans la clause FROM. Voici la récriture des
syntaxes précédentes :

mysgl> SELECT

cb.ID Clt,cl.Nom,cl.Prenom,ROUND (SUM(cb.Solde),2) AS
Solde_Total FROM comptes bancaires AS cb,clients_bancaires AS
cl WHERE cb.ID Clt=cl.ID_Clt GROUP BY cb.ID Clt;

Le mot-clef AS étant facultatif il peut étre supprimé. La syntaxe devient :

mysgl> SELECT

cb.ID Clt,cl.Nom,cl.Prenom,ROUND (SUM(cb.Solde),2) Solde Total
FROM comptes_bancaires cb,clients_bancaires cl WHERE

cb.ID Clt=cl.ID _Clt GROUP BY cb.ID Clt;

La syntaxe suivante affiche pour chaque personne le solde de son compte de dé-
pot et de sa carte bancaire différée.

mysql> SELECT cb.ID Clt,cl.Nom,cl.Prenom,cb.Type,cb.Solde AS
Solde FROM comptes_bancaires AS cb,clients_bancaires AS cl
WHERE cb.ID Clt=cl.ID Clt AND (cb.Type="Compte Dépdts" OR
cb.Type="Carte Différé");

e fom - Fom e e ittt R +
|[ID Clt|Nom | Prenom | Type |Solde

e fom - Fom e e ittt R +
| 1| DUPONT | JEAN [Compte Dépbdts| 550.98]
1	DUPONT	JEAN ICarte_Différél -115.8]		
2	JACQUENOD	JEAN-CHRISTOPHE	Compte_Dép@tS	=140.17
2	JACQUENOD	JEAN-CHRISTOPHE	Carte_Différé	-200
3	MURCIAN	CAROLE [Compte Dépbdts	3185.08]	
3	MURCIAN	CAROLE ICarte_Différél -104.1		
4	LERY	JEAN-MICHEL	Compte Dépbdts	-688.98]
5	DE-LA-RUE	JEAN-CHRISTOPHE	Compte Dépdts	94.68
5	DE-LA-RUE \JEAN—CHRISTOPHE\Carte_Différél -122.12			

44

6 |MARTIN
6 |MARTIN
7|MARTIN
7|MARTIN
8 | JACQUENOD
8| JACQUENOD
91 JACQUENOD
9 JACQUENOD

|

|

|

|

|

|

|

|

| 10| DUMOULIN | JEAN-CHRISTOPHE |Compte Dépdts|-2186.86]
| 10| DUMOULIN \JEAN—CHRISTOPHE\Carte_Différél 0]
| 11| LABONNE-JAYAT |OLIVIER |Compte_Dép6ts| 234.02|
| 11| LABONNE-JAYAT |OLIVIER ICarte_Différél -300|
| 12 |DE-LA-FONTAINE | JEAN [Compte Dépbdts| 1825.54]
| 13| LEVY | SAMUEL |Compte Dépdts| 12.09]
13	LEVY	SAMUEL ICarte_Différél -212.98		
14	DE-LA-RUE	LAURENCE	Compte_Dép6ts	275.7
14	DE-LA-RUE	LAURENCE \Carte_Différél -104.1		
15	DUPONT	JEAN [Compte Dépbdts	4572.1]	
15	DUPONT	JEAN [Carte Différé	-2987.65]	
16	MARTIN	ALBERT [Compte Dépbdts	363.49]	
16	MARTIN	ALBERT \Carte_Différél -150		
e fom - Fom e e ittt R +
30 rows in set (0,00 sec)

| PAUL-DAVID |Compte Dépédts| 406.21]
| PAUL-DAVID \Carte_Différél -200|
| PIERRE [Compte Dépbdts| 1790.22]
| PIERRE |[Carte Différé| -555.66]
| FREDERIC [Compte Dépdts| 394.87]
| FREDERIC |Carte_Différé| -552.87|
| LAURENCE [Compte Dépbdts| -679.08]
| LAURENCE |[Carte Différé| -276.21]

La syntaxe suivante cumule le solde du compte de dépdt et de la carte bancaire
différée, soit le solde de fin de mois.

mysgl> SELECT

cb.ID Clt,cl.Nom,cl.Prenom,cb.Type,ROUND (SUM(cb.Solde),2) AS

Solde_Fin Mois FROM comptes_bancaires AS cb,clients_bancaires
AS cl WHERE cb.ID Clt=cl.ID _Clt AND (cb.Type="Compte Dépdts"

OR cb.Type="Carte Différé") GROUP BY cb.ID Clt;

+-———- fom - Fom R fomm - +
|[ID Clt|Nom | Prenom | Type |Solde Fin Mois|
+-———- fom - Fom R fomm - +
| 1|DUPONT | JEAN |Compte Dépbdts| 435.18]
| 2 | JACQUENOD IJEAN—CHRISTOPHE\Compte_Dépétsl -340.17|
| 3 |MURCIAN | CAROLE |Compte Dépbdts| 3080.98]
| 4 | LERY | JEAN-MICHEL |Compte Dépbdts| -688.98]
| 5| DE-LA-RUE IJEAN—CHRISTOPHE\Compte_Dépétsl -27.44|
| 6 | MARTIN | PAUL-DAVID \Compte_Dépétsl 206.21 |
| 7 |MARTIN | PIERRE |Compte Dépéts| 1234.56]
| 8 | JACQUENOD | FREDERIC |Compte Dépbdts| -158.00]
| 9| JACQUENOD | LAURENCE |Compte Dépbdts| -955.29]
| 10| DUMOULIN | JEAN-CHRISTOPHE | Compte Dépdts|-2186.86]|
| 11 |LABONNE-JAYAT |OLIVIER \Compte_Dépétsl -65.98|
| 12 |DE-LA-FONTAINE | JEAN |Compte Dépbdts| 1825.54]
| 13|LEVY | SAMUEL |Compte Dépbdts| -200.89]
| 14 | DE-LA-RUE | LAURENCE |Compte Dépbdts| 171.60]

45

| 15| DUPONT | JEAN |Compte Dépdts| 1584.45]
| 16 |MARTIN | ALBERT |Compte Dépéts| 213.49]
e fomm e~ R ittt e fom————— +
16 rows in set (0,00 sec)

Avec INNER JOIN

La jointure précédente utilisait la clause WHERE. Cette clause a été utilisée pour
faciliter la compréhension, puisque elle avait déja été présentée, mais elle est deve-
nue obsolete pour les jointures. On lui préfére la syntaxe JOIN plus explicite. La
réécriture de :

mysgl> SELECT

cb.ID Clt,cl.Nom,cl.Prenom,ROUND (SUM(cb.Solde),2) Solde Total
FROM comptes_bancaires cb,clients_bancaires cl WHERE

cb.ID Clt=cl.ID Clt GROUP BY cb.ID Clt;

Se note :

mysgl> SELECT

cb.ID Clt,cl.Nom,cl.Prenom,ROUND (SUM(cb.Solde),2) Solde Total
FROM comptes_bancaires cb INNER JOIN clients_bancaires cl ON
cb.ID Clt=cl.ID Clt GROUP BY cb.ID Clt;

Cette syntaxe indique que les données sont récupérées a partir de la table
« comptes_bancaires », et que la jointure interne (INNER JOIN) est effectuée avec
la table « clients bancaires ». La clause ON fait la liaison entre les deux tables.
Voici son résultat :

tm————- tommmm e tommm - tomm - +
|[ID Clt|Nom | Prenom |Solde Totall]
tm————- tommmm e tommm - tomm - +
| 1[DUPONT | JEAN | 1200.50]
| 2| JACQUENOD | JEAN-CHRISTOPHE | -308.87]
| 3 |MURCIAN | CAROLE | 3548.98]
4	LERY	JEAN-MICHEL \ -18.98]	
5	DE-LA-RUE	JEAN-CHRISTOPHE	-27.44]
6 IMARTIN	PAUL-DAVID \ 206.21		
7	MARTIN	PIERRE	1234.56]
8	JACQUENOD	FREDERIC	432.98
9	JACQUENOD	LAURENCE \ -203.18]	
10	DUMOULIN	JEAN-CHRISTOPHE	-2186.86
11	LABONNE-JAYAT	OLIVIER	-65.98
12	DE-LA-FONTAINE	JEAN	1825.54
13	LEVY	SAMUEL	231.87]
14	DE-LA-RUE	LAURENCE \ 2135.98]	
15	DUPONT	JEAN	12314.90]
16	MARTIN	ALBERT	213.49]
tm————- tommmm e tommm - tomm - +

46

16 rows in set (0,00 sec)

Il est possible d’ajouter des clauses GROUP BY, ORDER BY, LIMIT, apr¢s la
clause JOIN. Cette syntaxe affiche le résultat précédent par ordre croissant du
Solde Total.

mysgl> SELECT

cb.ID Clt,cl.Nom,cl.Prenom,ROUND (SUM(cb.Solde),2) Solde Total
FROM comptes_bancaires cb INNER JOIN clients_bancaires cl ON

cb.ID Clt=cl.ID_Clt GROUP BY cb.ID Clt ORDER BY Solde_ Total;

tm————- tommmm e tommm - tomm - +
|[ID Clt|Nom | Prenom |Solde Totall]
tm————- tommmm e tommm - tomm - +
| 10| DUMOULIN | JEAN-CHRISTOPHE | -2186.86|
| 2| JACQUENOD | JEAN-CHRISTOPHE | -308.87]
| 9| JACQUENOD | LAURENCE | -203.18]
11	LABONNE-JAYAT	OLIVIER \ -65.98]	
5	DE-LA-RUE	JEAN-CHRISTOPHE	-27.44
4	LERY	JEAN-MICHEL \ -18.98]	
6 IMARTIN	PAUL-DAVID \ 206.21		
16	MARTIN	ALBERT	213.49]
13	LEVY	SAMUEL	231.87]
8	JACQUENOD	FREDERIC	432.98
1[DUPONT	JEAN \ 1200.50]		
7	MARTIN	PIERRE	1234.56]
12	DE-LA-FONTAINE	JEAN \ 1825.54	
14	DE-LA-RUE	LAURENCE \ 2135.98]	
3	MURCIAN	CAROLE	3548.98]
15	DUPONT	JEAN	12314.90]
tm————- tommmm e tommm - tomm - +

16 rows in set (0,00 sec)

De la méme maniére :

mysgl> SELECT

cb.ID Clt,cl.Nom,cl.Prenom,cb.Type,ROUND (SUM(cb.Solde),2) AS

Solde_Fin Mois FROM comptes_bancaires AS cb,clients_bancaires
AS cl WHERE cb.ID Clt=cl.ID _Clt AND (cb.Type="Compte Dépdts"

OR cb.Type="Carte Différé") GROUP BY cb.ID Clt;

Devient :

mysgl> SELECT

cb.ID Clt,cl.Nom,cl.Prenom,cb.Type,ROUND (SUM(cb.Solde),2) AS
Solde_Fin Mois FROM comptes_bancaires AS cb INNER JOIN
clients_bancaires AS cl ON cb.ID_Clt=cl.ID_Clt AND
(cb.Type="Compte_ Dépdts" OR cb.Type="Carte Différé") GROUP BY
cb.ID Clt;

Et affiche :

47

o e et oo oo oo +

|[ID Clt|Nom | Prenom | Type |Solde Fin Mois|
e fom - Fom e e ittt R +
| 1| DUPONT | JEAN [Compte Dépbdts| 435.18]
| 2 | JACQUENOD | JEAN-CHRISTOPHE | Compte_DépétS | =340.17|
| 3|MURCIAN | CAROLE [Compte Dépbdts| 3080.98]
| 4 | LERY | JEAN-MICHEL |Compte Dépbdts| -688.98]
| 5| DE-LA-RUE | JEAN-CHRISTOPHE | Compte_DépétS | -27.44|
| 6 |MARTIN | PAUL-DAVID \Compte_DépétS | 206.21 |
| 7 |MARTIN | PIERRE |Compte Dépdts| 1234.56]
| 8 | JACQUENOD | FREDERIC |Compte Dépbdts| -158.00]
| 9| JACQUENOD | LAURENCE [Compte Dépbdts| -955.29]
| 10| DUMOULIN | JEAN-CHRISTOPHE |Compte Dépdts|-2186.86]
| 11| LABONNE-JAYAT |OLIVIER | Compte_DépétS | -65.98|
| 12 | DE-LA-FONTAINE | JEAN [Compte Dépbdts| 1825.54]
| 13 |LEVY | SAMUEL [Compte Dépbdts| -200.89]
| 14 | DE-LA-RUE | LAURENCE [Compte Dépbdts| 171.60]
| 15| DUPONT | JEAN [Compte Dépbdts| 1584.45]
| 16 |MARTIN | ALBERT |Compte Dépdts| 213.49]
e fom - Fom e e ittt R +

16 rows in set (0,00 sec)

Mise en ceuvre de la jointure externe avec LEFT JOIN et RIGHT JOIN

Les jointures externes sélectionnent toutes les données, mémes celles qui sont ab-
sentes dans 1’autre table. Les deux syntaxes sont :
* LEFT JOIN : Toutes les données de la table située a gauche de JOIN sont affi-

chées, méme celles n’ayant aucune correspondance dans la table située a droite ;
* RIGHT JOIN : Toutes les données de la table située a droite de JOIN sont affi-

chées, méme celles n’ayant aucune correspondance dans la table située a gauche.

Pour comprendre la différence entre la jointure interne et les deux jointures ex-
ternes, gauches et droites, comparons les résultats des trois syntaxes :

Jointure interne : INNER JOIN

La syntaxe suivante affiche la somme des comptes avec une jointure interne.
Seules les informations ayant une correspondance entre les deux tables,
« comptes_bancaires » et « clients_bancaires », sont affichées.

Ainsi le compte ayant comme client le « ID_Clt» N°26 présent dans la table
« comptes_bancaires » mais absent de « clients bancaires » n’est pas affiché.

De la méme maniére, le client ayant comme « ID Clt» le N°17 (JACQUES
ROUSSE) dans la table « clients_bancaires » qui ne posséde aucun compte dans
« comptes_bancaires » n’est pas affiché.

mysgl> SELECT

cb.ID Clt,cl.Nom,cl.Prenom,ROUND (SUM(cb.Solde),2) Solde Total
FROM comptes_bancaires cb INNER JOIN clients_bancaires cl ON
cb.ID Clt=cl.ID _Clt GROUP BY cb.ID Clt;

48

o e et oo tommm oo +

|[ID Clt|Nom | Prenom |Solde Totall]
F-———— fom e~ i Fomm - +
| 1| DUPONT | JEAN | 1200.50]
| 2| JACQUENOD | JEAN-CHRISTOPHE | -308.87]
3	MURCIAN	CAROLE	3548.98
4	LERY	JEAN-MICHEL \ -18.98	
5	DE-LA-RUE	JEAN-CHRISTOPHE	-27.44
6	MARTIN	PAUL-DAVID \ 206.21	
7	MARTIN	PIERRE	1234.56
8	JACQUENOD	FREDERIC	432.98
9	JACQUENOD	LAURENCE \ -203.18]	
10	DUMOULIN	JEAN-CHRISTOPHE	-2186.86]
11	LABONNE-JAYAT	OLIVIER	-65.98
12	DE-LA-FONTAINE	JEAN	1825.54
13	LEVY	SAMUEL	231.87
14	DE-LA-RUE	LAURENCE	2135.98]
15	DUPONT	JEAN	12314.90]
16	MARTIN	ALBERT	213.49
F-———— fom e~ i Fomm - +
16 rows in set (0,00 sec)

Jointure externe gauche : LEFT JOIN

La syntaxe suivante affiche la somme des comptes avec une jointure externe
sur la table de gauche, soit la table « comptes_bancaires ». Toutes les informations
de la table de gauche « comptes_bancaires » avec ou sans correspondance dans la
table de droite « clients_bancaires » sont affichées.

Ainsi le compte ayant comme « ID_ClIt » le client N°26 dans la table située a
gauche de JOIN, « comptes_bancaires », est affiché sans aucun Nom ni prénom, et
un solde de 345,29 € alors que le client N°26 (ID_CIlt) est absent de la table située
a droite de JOIN, « clients_bancaires ».

mysgl> SELECT

cb.ID Clt,cl.Nom,cl.Prenom,ROUND (SUM(cb.Solde),2) Solde Total
FROM comptes_bancaires cb LEFT JOIN clients_bancaires cl ON
cb.ID Clt=cl.ID _Clt GROUP BY cb.ID Clt;

tm————- tommmm e tommm - tomm - +
|ID Clt|Nom | Prenom |Solde Totall
tm————- tommmm e tommm - tomm - +
| 1[DUPONT | JEAN | 1200.50]
| 2| JACQUENOD | JEAN-CHRISTOPHE | -308.87]
| 3 |MURCIAN | CAROLE | 3548.98]
4	LERY	JEAN-MICHEL \ -18.98]	
5	DE-LA-RUE	JEAN-CHRISTOPHE	-27.44
6 IMARTIN	PAUL-DAVID \ 206.21		
7	MARTIN	PIERRE	1234.56]
8	JACQUENOD	FREDERIC	432.98
9	JACQUENOD	LAURENCE	-203.18]

49

10 | DUMOULIN | JEAN-CHRISTOPHE | -2186.86]|

|

| 11| LABONNE-JAYAT |OLIVIER | -65.98]
| 12| DE-LA-FONTAINE | JEAN | 1825.54 |
| 13| LEVY | SAMUEL | 231.87]
| 14| DE-LA-RUE | LAURENCE | 2135.98]
| 15| DUPONT | JEAN | 12314.90]|
| 16| MARTIN | ALBERT | 213.49]
[26 |NULL | NULL [345.29]
tommm - pommm e pommm e oo +

17 rows in set (0,00 sec)

Jointure externe droite : RIGHT JOIN

La syntaxe suivante affiche la somme des comptes avec une jointure externe
sur la table de droite, soit la table « clients bancaires ». Toutes les informations de
la table « clients_bancaires » avec ou sans correspondance dans la table de gauche
« comptes_bancaires » sont affichées.

Ainsi le client JACQUES ROUSSE ayant pour « ID_CIt » le N°17 dans la table
située a droite de JOIN, « clients_bancaires », est affich¢ avec un solde NULL
puisqu’il est absent de la table située a gauche de JOIN, « comptes_bancaires ».

mysgl> SELECT

cl.ID Clt,cl.Nom,cl.Prenom,ROUND (SUM(cb.Solde),2) Solde Total
FROM comptes_bancaires cb RIGHT JOIN clients_bancaires cl ON
cb.ID Clt=cl.ID _Clt GROUP BY cl.ID Clt;

F-———— fom e~ i Fomm - +
|[ID Clt|Nom | Prenom |Solde Totall]
F-———— fom e~ i Fomm - +
| 1| DUPONT | JEAN | 1200.50]
| 2| JACQUENOD | JEAN-CHRISTOPHE | -308.87]
| 3 |MURCIAN | CAROLE | 3548.98|
| 4| LERY | JEAN-MICHEL \ -18.98|
| 5| DE-LA-RUE | JEAN-CHRISTOPHE | -27.44]
6	MARTIN	PAUL-DAVID	206.21
7	MARTIN	PIERRE	1234.56
8	JACQUENOD	FREDERIC	432.98
9	JACQUENOD	LAURENCE	-203.18]
10	DUMOULIN	JEAN-CHRISTOPHE	-2186.86]
11	LABONNE-JAYAT	OLIVIER	-65.98
12	DE-LA-FONTAINE	JEAN	1825.54
13	LEVY	SAMUEL	231.87
14	DE-LA-RUE	LAURENCE	2135.98]
15	DUPONT	JEAN	12314.90
16	MARTIN	ALBERT	213.49
17	ROUSSE	JACQUES	NULL
F-———— fom e~ i Fomm - +

17 rows in set (0,00 sec)

50

Sauvegarde de la base de données

Cette partie présente la sauvegarde d’une base de données. Au niveau du shell,
apres avoir quitter le moniteur MySQL si vous y étiez, saisissez la commande sui-
vante, puis le mot de passe lorsqu’il est demandé :

$ mysqldump -u root -p --opt CoursPHP >
sauvegarde CoursPHP.sql
Enter password: xxxx

Cela produit le fichier sauvegarde CoursPHP.sql dans le répertoire courant :

$ ls -1 sauvegarde CoursPHP.sql
-rw-rw-r-- 1 lery lery 2071 mars 30 16:54
sauvegarde CoursPHP.sql

Ce fichier contient toutes les syntaxes SQL recréant les différentes tables de la
base de données « CoursPHP ». Certaines lignes sont remplacées par des « ... ».

$ cat sauvegarde CoursPHP.sql

-- MySQL dump 10.13 Distrib 5.6.21, for Linux (x86 64)

-- Host: localhost Database: CoursPHP

-- Server versionb5.6.21

/*140101 SET @OLD CHARACTER SET CLIENT=Q@@CHARACTER SET CLIENT
*/;

/*!140101 SET

@OLD CHARACTER SET RESULTS=@@CHARACTER SET RESULTS */;
/*140101 SET @OLD COLLATION CONNECTION=@@COLLATION CONNECTION
*/;

/*!40101 SET NAMES utf8 */;

/*140103 SET QOLD TIME ZONE=QQ@TIME ZONE */;

/*!140103 SET TIME ZONE='+00:00' */;

/*140014 SET @OLD UNIQUE CHECKS=QQUNIQUE CHECKS,

UNIQUE CHECKS=0 */;

/*140014 SET @OLD FOREIGN KEY CHECKS=@E@FOREIGN KEY CHECKS,
FOREIGN KEY CHECKS=0 */;

/*'40101 SET @QOLD_ SQL MODE=@@SQL_ MODE,

SQL MODE='NO AUTO VALUE ON ZERO' */;

/*140111 SET @OLD SQL NOTES=@@SQL NOTES, SQL NOTES=0 */;

-- Table structure for table “personnes’
DROP TABLE IF EXISTS “personnes ;
/*140101 SET @saved cs client
/*!40101 SET character set client
CREATE TABLE “personnes’ (

"ID int(11) NOT NULL AUTO_ INCREMENT,

"Nom' varchar (255) NOT NULL,

‘Prenom’ varchar (255) NOT NULL,

@@character set client */;
utf8 */;

51

"Age’ int(11) NOT NULL,

PRIMARY KEY (°ID")
) ENGINE=InnoDB AUTO_ INCREMENT=5 DEFAULT CHARSET=utf8
COMMENT='Table de personnes';

Restauration de la base de données

La base de données « CoursPHP » n’est pas sauvegardée elle-méme par la syntaxe
précédente. Si elle a été supprimée il faut préalablement la recréer avant d’effectuer
la restauration. La restauration peut étre obtenue par la commande suivante :

$ mysql -u root -h localhost CoursPHP -p <
sauvegarde CoursPHP.sql
Enter password: xxxx

Ou bien sous le moniteur MySQL :

$ mysql --no-defaults -u root -h localhost -p
Enter password: xxxx

mysgl> USE CoursPHP;

Database changed

mysql> SOURCE sauvegarde CoursPHP.sql;

Query OK, 0 rows affected (0,00 sec)

Les requétes préparées

Principe

Durant une session SQL, il est courant d’effectuer plusieurs fois la méme requéte
avec différentes valeurs. Le langage SQL permet de préparer a I’avance une re-
quéte et de lui affecter un nom. Elle devient réutilisable, et s’exécute sur les valeurs
fournies au moment de son utilisation. Cette requéte préparée n’existe que durant
la session dans laquelle elle est créée. Elle utilise généralement des variables de
I’utilisateur qui sont présentées dans la section suivante.

Les variables utilisateurs

Les variables SQL sont toutes précédées par le caractére @. Elles contiennent des
valeurs comme des entiers, des réels, des chaines de caractéres. Seuls les lettres,
chiffres ainsi que les caractéres souligné, dollar et point sont autorisés pour le nom
des variables. En SQL, le nom des variables n’est pas sensible a la casse.

Création et modification

52

L’instruction « SET » crée une variable SQL si elle n’existe pas, ou la modifie
sinon. La variable n’existe que durant la session SQL. La syntaxe suivante crée les
deux variables @Nom et @Prenom. Le signe d’affectation est le caracteére « = » :

mysgl> SET @Nom='MARTIN',6 @Prenom='JEAN';
Query OK, 0 rows affected (0,00 sec)

Il est également possible de créer ou d’affecter les variables avec la syntaxe SE-
LECT. Le signe d’affectation est le caractére « :=» :

mysgl> SELECT @Nom:='MARTIN',6 @Prenom:='JEAN';

tommm oo tomm oo +
| @Nom:="MARTIN' |@Prenom:="JEAN" |
tomm - tomm oo +
|MARTIN | JEAN |
tomm - tomm oo +

1 row in set (0,00 sec)

L’affichage
L’affichage d’une variable s’obtient avec la syntaxe SELECT :

mysqgl> SELECT Q@Nom;

fmm———— +
|@Nom |
fmm———— +
|MARTIN |
fmm———— +

1 row in set (0,00 sec)

L'utilisation
L’exemple suivant montre 1’utilisation de la variable @Nom dans un SELECT sur la
table « personnes ». Cette variable sert de filtre dans une clause WHERE :

mysqgl> SELECT ID,Nom,Prenom,Age FROM personnes WHERE Nom=@Nom;
to—t Fmmm - ==
| ID|Nom | Prenom |Age |

| 6|MARTIN|PIERRE-DAVID| 27|
| 7IMARTIN|PIERRE | 56|
|16 |MARTIN|ALBERT

3 rows in set (0,00 sec
Création d’une requéte préparée
L’exemple précédent affiche toutes les personnes ayant comme nom MARTIN.

Pour obtenir la liste des DUPONT il suffit de saisir :

53

mysql> SET @Nom='DUPONT';
Query OK, 0 rows affected (0,00 sec)

mysqgl> SELECT ID,Nom,Prenom,Age FROM personnes WHERE Nom=@Nom;
to—t Fm————- +-==1

| ID|Nom | Prenom|Age|
to—pm————— o= +-——1
| 1|DUPONT | JEAN | 28|
| 15| DUPONT | JEAN | 54|
to—pm————— o= +-——1

2 rows in set (0,00 sec)

Afin d’éviter de répéter cette syntaxe, on peut préparer cette requéte et lui affec-
ter un nom grace a la syntaxe PREPARE :

mysql> PREPARE selection _nom FROM 'SELECT ID,Nom,Prenom,Age
FROM personnes WHERE Nom=?';

Query OK, 0 rows affected (0,01 sec)

Statement prepared

Voici plusieurs remarques concernant cette syntaxe :

* Le nom de la requéte selection nom, n’est pas entre apostrophes ;

Le texte de la requéte est lui entre apostrophes ;

» Une seule requéte peut étre indiquée dans une requéte préparée ;

* Le paramétre a utiliser au moment de 1’exécution est représenté par le caractére
« 7 ». Il peut y avoir plusieurs parametres ;

* Les parametres ne peuvent contenir que des données.

La syntaxe suivante montre un autre exemple avec deux parameétres :

mysql> PREPARE selection nom prenom FROM 'SELECT
ID,Nom,Prenom,Age FROM personnes WHERE Nom=? AND Prenom=?';
Query OK, 0 rows affected (0,00 sec)

Statement prepared

La syntaxe suivante utilise deux parametres et la clause LIKE :

mysql> PREPARE selection _nom like prenom FROM 'SELECT
ID,Nom,Prenom,Age FROM personnes WHERE Nom=? AND Prenom LIKE
o,

Query OK, 0 rows affected (0,00 sec)

Statement prepared

Exécution d’une requéte préparée

L’exécution d’une requéte préparée utilise la syntaxe EXECUTE et USING pour
passer les valeurs aux parameétres. Voici I’exécution de selection nom :

54

mysql> EXECUTE selection_nom USING @Nom;

to—pm————— o= +-——1
| ID|Nom | Prenom|Age|
to—pm————— o= +-——1
| 1|DUPONT | JEAN | 28|
| 15| DUPONT | JEAN | 54|
to—pm————— o= +-——1

2 rows in set (0,00 sec)

Voici un autre exemple d’utilisation de cette requéte préparée :

mysgl> SET @Nom='MARTIN';
Query OK, 0 rows affected (0,00 sec)

mysql> EXECUTE selection_nom USING @Nom;

to—pm————— fomm oo +-——+
| ID|Nom | Prenom |Age |
to—pm————— fomm oo +-——+
6	MARTIN	PIERRE-DAVID	27
7	MARTIN	PIERRE	56
16	MARTIN	ALBERT	25
to—pm————— fomm oo +-——+

3 rows in set (0,00 sec)
Voici I’exécution de selection nom prenom sur un nom et un prénom :

mysgl> SET @Prenom='PIERRE';

Query OK, 0 rows affected (0,00 sec)

mysql> EXECUTE selection_nom prenom USING @Nom, @Prenom;
e +-———— +-——+

| ID|Nom | Prenom|Age|

e +-———— +-——+

| 7|MARTIN|PIERRE| 56|

e +-———— +-——+

1 row in set (0,00 sec)

Voici ’exécution de selection nom like prenom Ssur un nom etun prénom :

mysgl> SET @Prenom='$%PIERRE%';
Query OK, 0 rows affected (0,00 sec)

mysql> EXECUTE selection nom like prenom USING @Nom, @Prenom;
to—tom———— fomm - +-——+

| ID|Nom | Prenom |Age |
to—pm————— fomm oo +-——+
| 6|MARTIN|PIERRE-DAVID| 27|
| 7|MARTIN|PIERRE | 56|
to—pm————— fomm oo +-——+

2 rows in set (0,00 sec)

55

Suppression d’une requéte préparée
La syntaxe DEALLOCATE PREPARE supprime une requéte préparée.

mysql> DEALLOCATE PREPARE selection _nom prenom;
Query OK, 0 rows affected (0,00 sec)

Apres cette syntaxe, la requéte préparée n’existe plus :

mysql> EXECUTE selection_nom prenom USING @Nom, @Prenom;
ERROR 1243 (HYO00O0): Unknown prepared statement handler
(selection nom prenom) given to EXECUTE

Avantages

Lors du lancement d’une requéte, la base de données effectue deux traitement :
I’analyse (syntaxique) de la requéte, puis son exécution. Si la méme requéte est
lancée plusieurs fois, son analyse est effectuée a chaque fois.

Avec la requéte préparée, cette analyse ne se fait qu'une seule fois, lors de sa
préparation. Chaque lancement ultérieur ne fait que 1’exécution, ce qui optimise le
temps de traitement.

Le second avantage est d’ordre sécuritaire. Dans le cadre d’une session SQL du-
rant laquelle ’utilisateur saisie lui méme les données de la requéte directement a la
console, la sécurité est assurée par cet utilisateur qui contrdle la nature des don-
nées. Cela est tout a fait différent lorsque que ’acces a la base se fait via un pro-
gramme PHP. Dans ce cas, ['utilisateur du site web peut trés bien entrer, a la place
de données attendues comme un nom, une requéte SQL, et ainsi avoir un acces
direct a la base de données et potentiellement récupérer des données sensibles
comme des mots de passe. Ce type de piratage se nomme injection SQL.

Avec les requétes préparées, les parameétres sont identifiés comme tels et ne peu-
vent pas étre assimilés a des requétes, ce qui protége contre 1’injection SQL.

Le mode transactionnel

Problématique initiale

La gestion des données dans des tables de bases de données peut nécessiter plu-
sieurs requétes.

Si a chaque requéte mettant & jour les données (UPDATE ou INSERT) la base
reste « cohérente » alors cela ne pose aucun probléme, méme s’il y a une erreur. En
effet, & chaque requéte on peut détecter I’erreur de mise a jour et corriger le pro-
bléme.

56

Par contre, si la mise a jour est plus « complexe », la cohérence des données peut
étre obtenue apres plusieurs requétes. Ainsi, si la premiére requéte est correctement
effectuée mais pas la deuxiéme, alors les données restes incohérentes. Dans ce cas
il faut pouvoir détecter I’erreur et revenir en arriére de cet ensemble de requétes, a
1’état d’origine.

C’est le cas d’un virement bancaire entre les comptes de deux clients, qui est
constitué de deux actions : Le débit du premier compte bancaire ; Le crédit du se-
cond compte bancaire. Il est impératif que ces actions soient effectuées toutes les
deux pour que le virement soit effectif.

Si le débit du premier compte est effectué et que le crédit du second compte
échoue, alors la somme a bien été débitée du compte initial mais n’a pas été crédi-
tée sur le compte final. Le solde cumulé de ces deux comptes n’est plus le méme.

11 faut détecter I’erreur de la transaction, le virement, constituée par deux actions
complémentaires, le débit et le crédit, et corriger ’erreur afin de conserver
I’équilibre des deux comptes !

De plus, il est impératif que, pendant les modifications au sein d’une transaction,
aucun autre utilisateur ne puisse venir s’intercaler et modifier les tables sur les-
quelles travaille la transaction. Une transaction gére le verrouillage des tables accé-
dées. D¢s la premiere modification effectuée a I’intérieur d’une transaction, toute
modification par un autre utilisateur sera bloquée. Ainsi, si un autre utilisateur tente
de modifier un élément de la table, sa modification reste en attente, elle ne sera
prise en compte qu’a la fin de la transaction en cours de traitement.

Un traitement « global » regroupant plusieurs requétes est une transaction.
Elle doit étre vue, appliquée, ou annulée, comme si c’était une seule requéte.

Il existe deux moyens de mettre en ceuvre le mode transactionnel :

* via la désactivation de la validation automatique pendant la session de travail :
autocommit ;
» via la création d’une transaction particuliére et ponctuelle : START TRAN-

SACTION;

Une caractéristique du moteur de stockage

Selon le moteur de stockage des données, le mode transactionnel sera disponible ou
non. Ainsi le moteur Mylsam, performant et ayant un index FULL-TEXT, ne sup-
porte ni les clefs étrangéres, ni les transactions. Le moteur InnoDB, performant
dans l’intégrité des données, gere les clefs étrangeres et les transactions. C’est le
moteur qui a été utilisé lors de la création des différentes tables.

Gestion de la validation automatique via autocommit

Principe

57

Par défaut le moteur InnoDB valide automatiquement toutes les transactions, et
considere chaque requéte comme une transaction. Cette validation automatique est
définie par le mode « autocommit ».

Affichage de I'état
La syntaxe suivante affiche son état :

mysgl> SELECT Q@autocommit;

e +
|@Rautocommit |
fomm +
| 1]
e +

1 row in set (0,00 sec)

Quand ce mode est actif (valeur 1), chaque mise a jour de la table (INSERT,
UPDATE, ...), est réellement effectuée et écrite sur le disque.

Modification de I'état

Si on souhaite faire des modifications sur les tables et a tout moment pouvoir les
valider ou revenir en arriére, il faut désactiver ce mode, comme suit :

mysgl> SET autocommit = 0;
Query OK, 0 rows affected (0,00 sec)

Une fois « autocommit » désactivé, la session de travail posséde en permanence
une transaction ouverte, ce qui n’est pas sans conséquence. C’est-a-dire que, si on
veut rendre permanentes les modifications, il faudra les valider via 1’instruction
COMMIT pour provoquer leur écriture sur disque. Si on veut les annuler, il faut
utiliser I’instruction ROLLBACK pour les supprimer de la mémoire.

Les instructions COMMIT ou ROLLBACK terminent la transaction courante, et
une nouvelle transaction est & nouveau ouverte, tant que le mode « autocommit »
reste désactivé. La syntaxe suivante revient au mode de validation automatique.

mysgl> SET autocommit = 1;
Query OK, 0 rows affected (0,00 sec)

Inconvénients

La gestion directe de « autocommit » pour effectuer des transactions pose un cer-

tain nombre de problémes :

8. Tant que les modifications ne sont pas validées via COMMIT, rien n’est écrit sur
disque dur, tout reste dans la mémoire de la session de travail. L’affichage
« laisse croire » a ’utilisateur que les traitements sont effectués, mais ce n’est
que la vision de la mémoire de sa session de travail. En effet, si un autre utilisa-

58

teur se connecte en méme temps et consulte la table, il ne verra que les informa-

tions stockées sur disque, donc aucune des modifications du premier utilisateur !
9. Dés la premiére modification a I’intérieur d’une transaction, le verrouillage des

tables accédées est effectif. Dans le cas présent, la désactivation de « autocom-
mit » implique qu’une transaction est ouverte en permanence. Ainsi les autres
utilisateurs peuvent se retrouver bloqués trés longtemps, empéchant le fonction-
nement « normal » concurrentiel de la base de données.

Ce mode de gestion des transactions via « autocommit » n’est pas recommandé,
pour les raisons évoquées précédemment. Il est préférable d’ouvrir une transaction
quand on en a besoin, avec START TRANSACTION. Elle se terminera définiti-
vement avec COMMIT ou ROLLBACK.

Exemples d’utilisation

Le premier exemple présente le fonctionnement du mode « autocommit », et le fait
qu’une transaction reste ouverte en permanence. Le second exemple montre que
tant que le mode « autocommit » est désactivé, les modifications ne sont pas écrites
sur disque, les autres utilisateurs ne les voient pas.

Exemple de fonctionnement
Cet exemple présente « autocommit », et I’ouverture permanente d’une transaction.
On se connecte et on sélectionne la base de données « CoursPHP »

$ mysql --no-defaults -u root -h localhost -p

Enter password: xxxx

Welcome to the MySQL monitor. Commands end with ; or \g...
mysgl> USE CoursPHP;

Reading table information for completion of table and
Database changed

On affiche I’état des comptes N°1 et N°7, de la table « comptes_bancaires »

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

fomm oo fomm = fomm - fo————- fomm = +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
R TR T — fomm o b +
| 1] 00602]165143P|Compte Dépdts| 1| 550.98]
| 7] 00602|154123P|Compte Dépdts| 313185.08]
tmmm R T ——— SR ——————- T T —— +

2 rows in set (0,00 sec)
On désactive le mode « autocommit »

mysgl> SET autocommit = 0;
Query OK, 0 rows affected (0,00 sec)

59

Dorénavant, il faut valider ou annuler explicitement les requétes pour les écrire
ou non sur le disque. On débite 200 € du compte N°7, et on crédite 200 € au
compte N°1 :

mysql> UPDATE comptes bancaires SET Solde=Solde-200 WHERE
Id_Cpt=7;

Query OK, 1 row affected (0,00 sec)

Rows matched: 1 Changed: 1 TWarnings: 0

mysql> UPDATE comptes bancaires SET Solde=Solde+200 WHERE
Id_Cpt=1;

Query OK, 1 row affected (0,00 sec)

Rows matched: 1 Changed: 1 TWarnings: 0

L’état des deux comptes montre que les modifications sont gardées en mémoire.

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

e e fomm———— e ettt e e +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
e e fomm———— e ettt e e +
| 1] 00602]165143P|Compte Dépdts| 1] 750.98]
| 7] 00602[154123P|Compte Dépdts| 312985.08]
e e fomm———— e ettt e e +

2 rows in set (0,00 sec)
On annule les traitements précédents.

mysql> ROLLBACK;
Query OK, 0 rows affected (0,01 sec)

L’état des deux comptes montre que rien n’a été pris en compte, les valeurs
d’origines sont affichées :

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

e e fomm———— e ettt e e +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
e e fomm———— e ettt e e +
| 1] 00602]165143P|Compte Dépdts| 1] 550.98]
| 7] 00602|154123P|Compte Dépdts| 313185.08]
THE— TEE— T — T — R — PR +

2 rows in set (0,00 sec)
A nouveau, on débite 200 € du compte N°7, et on crédite 200 € au compte N°1 :

mysql> UPDATE comptes bancaires SET Solde=Solde-200 WHERE
Id_Cpt=7;

Query OK, 1 row affected (0,00 sec)

Rows matched: 1 Changed: 1 TWarnings: 0

60

mysql> UPDATE comptes bancaires SET Solde=Solde+200 WHERE
Id_Cpt=1;

Query OK, 1 row affected (0,00 sec)

Rows matched: 1 Changed: 1 TWarnings: 0

On affiche 1’état des deux comptes, les modifications sont mémorisées.

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

e e fomm———— e ettt e e +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
e e fomm———— e ettt e e +
| 1] 00602]165143P|Compte Dépdts| 1] 750.98]
| 7] 00602[154123P|Compte Dépdts| 312985.08]
e e fomm———— e ettt e e +

2 rows in set (0,00 sec)
On valide les traitements précédents.

mysgl> COMMIT;
Query OK, 0 rows affected (0,01 sec)

L’affichage des deux comptes montre les mémes données :

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

o o fo— fomm - R et fo——— +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
o o fo— fomm - R et fo———— +
| 1] 00602]165143P|Compte Dépdts| 1| 750.98]
| 7] 00602[154123P|Compte Dépdts| 312985.08|
o o fo— fomm - e fo———— +

2 rows in set (0,00 sec)

Une annulation puis un affichage montre que rien ne change, la validation pré-
cédente a écrit les modifications sur le disque.

mysql> ROLLBACK;

Query OK, 0 rows affected (0,00 sec)

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

o o fo— fomm - R et fo———— +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
o o fo— fomm - R et fo———— +
| 1] 00602]165143P|Compte Dépdts| 1| 750.98]
| 7] 00602[154123P|Compte Dépdts| 312985.08|
o o fo— fomm - R et fo———— +

61

2 rows in set (0,00 sec)
Une nouvelle fois, on débite 200 € du compte N°7 :

mysql> UPDATE comptes bancaires SET Solde=Solde-200 WHERE
Id_Cpt=7;

Query OK, 1 row affected (0,00 sec)

Rows matched: 1 Changed: 1 TWarnings: 0

On affiche les deux comptes :

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

o o fo— fomm - R et fo———— +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
o o fo— fomm - R et fo———— +
| 1] 00602]165143P|Compte Dépdts| 1| 750.98]
| 7] 00602[154123P|Compte Dépdts| 312785.08]
o o fo— fomm - R et fo———— +

2 rows in set (0,00 sec)
On annule les traitements:

mysql> ROLLBACK;
Query OK, 0 rows affected (0,00 sec)

On affiche les deux comptes. Le débit précédent du compte N°7 est bien annulé,
ce qui démontre qu’une transaction est ouverte en permanence tant que « auto-
commit » est désactivée !

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

o o fo— fomm - R et fo———— +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
o o fo— fomm - R et fo———— +
| 1] 00602]165143P|Compte Dépdts| 1| 750.98]
| 7] 00602[154123P|Compte Dépdts| 312985.08]
o o fo— fomm - R et fo———— +

2 rows in set (0,00 sec)

On réactive le mode « autocommit ». Désormais, chaque modification est écrite
sur disque.

mysgl> SET autocommit = 1;
Query OK, 0 rows affected (0,00 sec)

Impact pour les autres utilisateurs

62

Les syntaxes suivantes montrent que tant que le mode « autocommit » est désacti-
vé, et qu’aucune instruction COMMIT n’est exécutée, les modifications ne sont pas
écrites sur disque, les autres utilisateurs ne les voient pas. Pour présenter 1’impact
sur les autres utilisateurs nous utilisons deux comptes en parallele, I’administrateur
« root » et le compte « clientsconsult ».

On se connecte comme administrateur et on sélectionne la base de données
« CoursPHP » :

$ mysql --no-defaults -u root -h localhost -p

Enter password: xxx

Welcome to the MySQL monitor. Commands end with ; or \g...
mysgl> USE CoursPHP;

Reading table information for completion of table and
Database changed

On désactive le mode « autocommit »

mysgl> SET autocommit = 0;
Query OK, 0 rows affected (0,00 sec)

On affiche 1’état des comptes bancaires N°1 et N°7.

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

fomm oo fomm = fomm - fo————- fomm = +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
b oo fomm oo b Fmm o +
| 1] 00602]165143P|Compte Dépdts| 1| 750.98]
| 7] 00602|154123P|Compte Dépdts| 312785.08]|
tmmm R T ——— SRR —————- T T —— +

2 rows in set (0,00 sec)

On débite 100 € du compte N°7, et on crédite 100 € au compte N°1 :

mysql> UPDATE comptes bancaires SET Solde=Solde-100 WHERE
Id_Cpt=7;

Query OK, 1 row affected (0,00 sec)

Rows matched: 1 Changed: 1 TWarnings: 0

mysql> UPDATE comptes bancaires SET Solde=Solde+100 WHERE
Id Cpt=1;

Query OK, 1 row affected (0,00 sec)

Rows matched: 1 Changed: 1 TWarnings: 0

On affiche 1’état des comptes bancaires N°1 et N°7. On voit ces deux modifica-
tions, qui ne sont faites qu’en mémoire de la session de 1’administrateur.

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR
ID Cpt=7);

63

o o oo o mm oo oo oo +

|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
b oo fomm oo b T FR +
| 1] 00602]165143P|Compte Dépdts| 1] 850.98]
| 7] 00602[154123P|Compte Dépdts| 312685.08]
to—m - to—m——- fomm fomm - to—— - fomm———— +

On ouvre en parallele une autre session avec le compte clientsconsult et on sé-
lectionne la base de données « CoursPHP ».

$ mysql --no-defaults -u clientsconsult -h localhost -p
Enter password: xxxx
Welcome to the MySQL monitor. Commands end with ; or \g...

mysgl> USE CoursPHP;
Reading table information for completion of table and

Database changed

On affiche I’état des comptes bancaires N°1 et N°7. On ne voit aucune des mo-
difications effectuées par I’administrateur car elles ne sont pas écrites sur le disque.

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

e e fomm———— e ettt e e +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
e e fomm———— e ettt e e +
| 1] 00602]165143P|Compte Dépdts| 1] 750.98]
| 7] 00602[154123P|Compte Dépdts| 312785.08]
e e fomm———— e ettt e e +

2 rows in set (0,00 sec)

On revient a la session ouverte par I’administrateur, et on exécute 1’instruction
COMMIT :

mysgl> COMMIT;
Query OK, 0 rows affected (0,01 sec)

Les modifications des comptes bancaires N°1 et N°7 sont écrites sur disque :

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

e e fomm———— e ettt e e +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
e e fomm———— fom - e e +
| 1] 00602]165143P|Compte Dépdts| 1] 850.98]
| 7] 00602[154123P|Compte Dépdts| 312685.08]
e e fomm———— e ettt e e +

64

2 rows in set (0,00 sec)

On revient a la session ouverte par clientsconsult, et on affiche a nouveau 1’état
des comptes bancaires N°1 et N°7. On voit les modifications de I’administrateur.

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

e e fomm———— e ettt e e +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
e e fomm———— e ettt e e +
| 1] 00602]165143P|Compte Dépdts| 1] 850.98]
| 7] 00602[154123P|Compte Dépdts| 312685.08]
e e fomm———— e ettt e e +

2 rows in set (0,00 sec)

Sur la session de ’administrateur on remet la validation automatique, et on
ferme la session.

mysgl> SET autocommit = 1;
Query OK, 0 rows affected (0,00 sec)

mysqgl> QUIT;
Bye

Sur la session de clientsconsult on ferme la session.

mysqgl> QUIT;
Bye

Utilisation d’une transaction spécifique avec START TRANSACTION

Principe

L’utilisation d’une transaction spécifique, évite de maintenir une transaction ou-

verte en permanence durant toute la session de travail, ce qui est préjudiciable pour

les autres utilisateurs. Le processus d’écriture sur disque des données avec une
transaction spécifique, est le suivant :

* Avant la transaction la validation est automatique : chaque modification est
écrite sur disque.

* Pendant la transaction la validation n’est plus automatique : L’instruction
COMMIT effectue la validation de 1’ensemble des instructions, et provoque
I’écriture simultanée des modifications. L’instruction ROLLBACK annule les
modifications et ne provoque aucune écriture ;

* Aprés la transaction la validation redevient automatique.

Il est recommandé que chaque requéte opérant des modifications les applique ré-

ellement sur disque. Il faut que le mode « autocommit » reste activé par défaut ! Il

65

faut utiliser une transaction spécifique quand 1’écriture simultanée sur disque d’un
ensemble de modifications est nécessaire.

Les requétes :

START TRANSACTION
La syntaxe suivante démarre une nouvelle transaction :

START TRANSACTION;

* Elle désactive « autocommit » jusqu’a la saisie du COMMIT ou ROLLBACK ;

* Elle active le mécanisme de verrouillage « LOCK » de la table, empéchant toute
modification par une autre personne, d¢s la premiere modification a 1’intérieur
de la transaction.

Apres cette syntaxe on saisit la série de requéte qui modifie la table (UPDATE,

INSERT, ...). Cette syntaxe posséde deux alias : BEGIN et BEGIN WORK.

COMMIT

La syntaxe COMMIT termine la transaction en validant les traitements. Les modi-
fications sont écrites sur disque. Le verrouillage de la table est levé apres la valida-
tion. Sa syntaxe est :

COMMIT;

ROLLBACK

La syntaxe ROLLBACK termine la transaction en annulant les traitements. Aucune
modification n’est écrite sur disque. Le verrouillage de la table est levé apres
I’annulation. Sa syntaxe est :

ROLLBACK;

Si une erreur est détectée sur une des requétes de la transaction, on peut, via
ROLLBACK, revenir en arriére a 1’état initial avant le début de la transaction.

Rappel
Chaque modification est visible durant la transaction pour I'utilisateur qui I'effectue mais elle
est invisible pour les autres tant qu’elle elle n’est pas écrite sur le disque.

Exemples

Exemple d’annulation
On connecte I’administrateur et on sélectionne la base de données « CoursPHP »

$ mysql --no-defaults -u root -h localhost -p

Enter password: xxxx

Welcome to the MySQL monitor. Commands end with ; or \g...
mysgl> USE CoursPHP;

Reading table information for completion of table and

66

Database changed

Nous souhaitons faire un virement de 200 € du compte N°7 vers le compte N°1.
Voici I’état de ces deux comptes :

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

o o fo— fomm - R et fo———— +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
o o fo— fomm - R et fo———— +
| 1] 00602]165143P|Compte Dépdts| 1| 550.98]
| 7] 00602[154123P|Compte Dépdts| 313185.08]
o o fo— fomm - R et fo———— +

2 rows in set (0,00 sec)
On démarre une transaction :
mysql> START TRANSACTION;

On retire 200 € du compte N°7. La modification est effectuée en mémoire.

mysql> UPDATE comptes bancaires SET Solde=Solde-200 WHERE
Id_Cpt=7;

Query OK, 1 row affected (0,00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

o o fo— fomm - R et fo———— +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
o o fo— fomm - R et fo———— +
| 1] 00602]165143P|Compte Dépdts| 1| 550.98]
| 7] 00602[154123P|Compte Dépdts| 312985.08]
o o fo— fomm - R et fo———— +

2 rows in set (0,00 sec)

On ajoute 200 € du compte N°100, au lieu du compte N°1. Comme le compte
100 n’existe pas, aucune modification n’est effectuée. La requéte donne un résultat
et I’affichage montre la modification.

mysql> UPDATE comptes bancaires SET Solde=Solde+200 WHERE

Id Cpt=100;

Query OK, 0 rows affected (0,00 sec)

Rows matched: 0 Changed: 0 Warnings: 0

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR
ID Cpt=7);

e e fomm———— e ettt e R +

|ID Cpt|Agence|Numero |Type |ID Clt|Solde |

67

e e fomm———— e ettt e e +
| 1] 00602]165143P|Compte Dépdts| 1| 550.98]
| 7] 00602[154123P|Compte Dépdts| 312985.08|
e e fomm———— e ettt e e +
2 rows in set (0,00 sec)

On annule toutes les modifications précédentes. L’état initial est restauré :

mysql> ROLLBACK;

Query OK, 0 rows affected (0,00 sec)

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

o o fo— fomm - R et fo———— +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
o o fo— fomm - R et fo———— +
| 1] 00602]165143P|Compte Dépdts| 1| 550.98]
| 7] 00602[154123P|Compte Dépdts| 313185.08]
o o fo— fomm - R et fo———— +

2 rows in set (0,00 sec)
mysgl> QUIT;
Bye

Exemple de validation

L’exemple suivant reprend les mémes opérations, mais sans l’erreur de compte
(100 au lieu de 1). C’est le bon compte qui est crédité. On se connecte comme ad-
ministrateur et on sélectionne la base de données « CoursPHP »

$ mysql --no-defaults -u root -h localhost -p

Enter password: xxxx

Welcome to the MySQL monitor. Commands end with ; or \g...
mysgl> USE CoursPHP;

Reading table information for completion of table and
Database changed

Nous voulons faire un virement de 200 € du compte N°7 vers le compte N°1.
Voici I’état de ces deux comptes :

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

o o fo— fom e o +o—— +
|ID Cpt|Agence|Numero |Type |[ID Clt|Solde |
o o fo— fomm - R et fo———— +

| 1] 00602]165143P|Compte Dépdts| 1| 550.98]

| 7] 00602[154123P|Compte Dépdts| 313185.08]
o o fo— fomm - R et fo———— +

2 rows in set (0,00 sec)

68

On démarre une transaction :
mysgl> START TRANSACTION;
On retire 200 € du compte N°7. La modification est effectuée en mémoire.

mysql> UPDATE comptes bancaires SET Solde=Solde-200 WHERE
Id_Cpt=7;

Query OK, 1 row affected (0,00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

o o fo— fomm - R et fo———— +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
o o fo— fomm - R et fo———— +
| 1] 00602]165143P|Compte Dépdts| 1| 550.98]
| 7] 00602[154123P|Compte Dépdts| 312985.08]
o o fo— fomm - R et fo———— +

2 rows in set (0,00 sec)
On ajoute 200 € au compte N°1. La modification est effectuée.

mysql> UPDATE comptes bancaires SET Solde=Solde+200 WHERE
Id_Cpt=1;

Query OK, 1 row affected (0,00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

o o fo— fomm - R et fo———— +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
o o fo— fomm - R et fo———— +
| 1] 00602]165143P|Compte Dépdts| 1] 750.98]
| 7] 00602[154123P|Compte Dépdts| 312985.08|
o o fo— fomm - R et fo———— +

2 rows in set (0,00 sec)
On finalise la transaction. Les données sont écrites sur disque :

mysgl> COMMIT;

Query OK, 0 rows affected (0,00 sec)

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID _Clt,Solde FROM
comptes_bancaires WHERE Type="Compte Dépdts" AND (ID Cpt=1 OR

ID Cpt=7);

e e fomm———— e ettt e e +
|ID Cpt|Agence|Numero |Type |ID Clt|Solde |
e e fomm———— e ettt e e +
| 1] 00602]165143P|Compte Dépdts| 1] 750.98]
| 7] 00602[154123P|Compte Dépdts| 312985.08]
e e fomm———— e ettt e e +

69

2 rows in set (0,00 sec)

La gestion des utilisateurs

Cette section présente la gestion des utilisateurs en langage SQL.

Principe
MySQL gére les utilisateurs via une identification de la forme: du-

pont@ordinateur.fr. Le fonctionnement de cet identifiant, ainsi que les privileges
qui lui sont associés ont été présentés au chapitre 10 dans la section phpMyAdmin.

Affichage des utilisateurs existants

La table mysql.user

Pour gérer les utilisateurs il faut se connecter en tant que « root ».

$ mysql --no-defaults -u root -h localhost -p
Enter password: xxxx
Welcome to the MySQL monitor. Commands end with ; or \g...

Les utilisateurs sont gérés dans la table « mysql.user ». La liste est obtenue par la
syntaxe suivante :

mysql> SELECT User, Host, Password FROM mysql.user;
o e +
|User |Host | Password

o e +
|root|localhost|*9C4FE4A10F01988F50D685C3F9515570588FEFDF |
|root|linux | \
| |localhost|

| | linux |

|pma |localhost|*AC4D94A19F01998F50D68AC3F951A862588AEFAS |
o e +
5 rows in set (0,00 sec)

L’utilisateur anonyme

L’affichage précédent montre deux lignes dont la colonne « User » est vide, et la
colonne « Host » indique « localhost » et « linux ». C’est I’utilisateur « anonyme »
qui est créé des I’installation de MySQL, en méme temps que la base « test ».
N’importe quel utilisateur qui n’est pas enregistré (aucun login) et qui n’a donc pas
de mot de passe, peut se connecter a la base « test» et a toutes les bases dont le
nom commence par « test ». En voici un exemple.

On se connecte sans login ni mot de passe (connexion anonyme) :

70

$ mysql --no-defaults -h localhost
Welcome to the MySQL monitor. Commands end with ; or \g...

On tente d’accéder a la base « CoursPHP », ’accés est refusé.

mysgl> USE CoursPHP;
ERROR 1044 (42000): Access denied for user ''@'localhost' to
database 'CoursPHP'

On tente d’accéder a la base « test », [’acces est accepté.

mysgl> USE test;
Reading table information for completion of table and
Database changed

On voit toutes les tables de la base « test » :

mysql> SHOW TABLES;

tommm - +
|Tables in test|
tommm - +
Imateriel |
tommm - +

1 row in set (0,01 sec)

On voit tous les enregistrements de la table « materiel » :

mysgl> SELECT * FROM materiel ;
e +-——— +
|ID|Libelle|Prix |

e +-——— +

| 1lpelle | 12.5]

| 2|marteau|10.26]

e +-——— +

2 rows in set (0,01 sec)

mysql> QUIT;

Bye

Création d’un compte utilisateur CREATE USER

Il existe deux méthodes pour créer des utilisateurs sous MySQL et leur affecter des
priviléges :

1. Utiliser les instructions de gestion des utilisateurs telles que CREATE USER et
GRANT ;

2. Manipuler directement les tables de priviléges avec les instructions INSERT,

UPDATE, DELETE ;
IL est préférable d’utiliser les instructions dédiées a la gestion des utilisateurs,

car elles effectuent des controles de cohérence lors de la création, ce qui n’est pas
le cas avec I’accés direct aux tables ce qui reste trés dangereux.

71

Dans cet exemple nous créons deux nouveaux comptes d’utilisateur :
* personnesadm@% : pour un acces depuis n’importe quel poste de connexion ;
* personnesadm@local : pour un accés local (depuis le serveur MySQL) ;

Le mot de passe est défini en méme temps via la syntaxe « IDENTIFIED BY ».
Les « xxxx » doivent étre remplacées par le mot de passe réel.

mysgl> CREATE USER personnesadm@'$' IDENTIFIED BY 'xxxx'
Query OK, 0 rows affected (0,27 sec)
mysgl> CREATE USER personnesadm@localhost IDENTIFIED BY '=xxxx'

’

’

Query OK, 0 rows affected (0,00 sec)

Le mot de passe aurait pu étre affecté ou modifié séparément. Ainsi la syntaxe
de la création du compte « personnesadm@localhost » peut également s’écrire :

mysgl> CREATE USER personnesadm@localhost ;
mysgl> SET PASSWORD FOR personnesadm@localhost =
PASSWORD ('xxx"') ;

La syntaxe suivante vérifie que les deux comptes ont été créés :

mysql> SELECT User, Host, Password FROM mysql.user;

fomm fomm = o - +
|User |Host | Password

fomm fomm = o - +
| root |localhost | *9C4FE4A10F01988F50D685C3F9515570. .. |
|root | linux |

| | localhost|

| | linux |

pma	localhost	*AC4D94A19F01998F50D68AC3F951A862. ..
personnesadm	localhost	*70828A978420F0614DEBA7174BF38083. ..
personnesadm	%	*70828A978420F0614DEBA7174BF38083. ..
fomm fomm = o - +

7 rows in set (0,00 sec)

Gestion des priviléges

Affichage des privileges SHOW GRANTS

La syntaxe suivante affiche les priviléges de I’utilisateur « pma@locahost » :

mysgl> SHOW GRANTS FOR pma@localhost;

|Grants for pma@localhost

72

|GRANT USAGE ON *.* TO 'pma'@'localhost' IDENTIFIED BY
|GRANT SELECT, INSERT, UPDATE, DELETE, EXECUTE ON “phpmy
| GRANT SELECT (Host, Create priv, Shutdown priv, Delete p...
| GRANT SELECT (Table priv, Column priv, Table name, Db,
|GRANT SELECT ON ‘"mysgl . host® TO 'pma'@'localhost'
|GRANT SELECT ON ‘mysgl . db® TO 'pma'@'localhost'

6 rows in set (0,00 sec)

Ajout de privileges GRANT
L’ajout de priviléges utilise la syntaxe SQL, GRANT.

Pour le compte personnesadm@ %
La syntaxe suivante affecte le privilege de consulter la table « personnes » (SE-
LECT) pour cet utilisateur depuis n’importe quel poste de travail.

mysgl> GRANT SELECT ON CoursPHP.personnes TO personnesadm@'$';
Query OK, 0 rows affected (0,00 sec)

La syntaxe suivante vérifie les privileéges du compte de cet utilisateur :

mysgl> SHOW GRANTS FOR personnesadm@'$';

|GRANT USAGE ON *.* TO 'personnesadm'@'$' IDENTIFIED BY ... \
|GRANT SELECT ON "CoursPHP . 'personnes TO 'personnesadm'@'$'|

2 rows in set (0,00 sec)

Pour le compte personnesadm@localhost
Nous affectons le privilége de modifier et supprimer la table « personnes » pour
cet utilisateur depuis le serveur.

mysgl> GRANT SELECT, INSERT,UPDATE,DELETE ON CoursPHP.personnes
TO personnesadm@localhost;
Query OK, 0 rows affected (0,00 sec)

La syntaxe suivante affiche les priviléges de cet utilisateur :

mysgl> SHOW GRANTS FOR personnesadm@localhost;

|GRANT USAGE ON *.* TO 'personnesadm'@'localhost' IDENTIFI... |
| GRANT SELECT, INSERT, UPDATE, DELETE ON ‘CoursPHP\.\perso...\

2 rows in set (0,00 sec)

73

Variations syntaxiques
Si on désire affecter le privilege SELECT sur toutes les tables de toutes les bases
de données au compte « personnesadm@localhost », il faut saisir la syntaxe :

mysgl> GRANT SELECT ON *.* FROM personnesadm@localhost;

On peut également appliquer cette syntaxe a plusieurs comptes :

mysgl> GRANT SELECT ON *.* FROM personnesadm@localhost,
personnes@'%';

Si on désire affecter tous les privileges sur la table « personnes », il faut saisir la
syntaxe :

mysgl> GRANT ALL PRIVILEGES ON CoursPHP.personnes FROM
personnesadm@localhost;

Enfin, il est possible de créer, d’affecter les privileges et un mot de passe en une
seule syntaxe. Ainsi pour le compte d’utilisateur « personnesadm@localhost »,
pour le créer et lui affecter les priviléges SELECT, INSERT, UPDATE, DELETE

1l suffit de saisir :

mysgl> GRANT SELECT,INSERT,UPDATE,DELETE ON CoursPHP.personnes
TO personnesadm@localhost IDENTIFIED BY 'xxxx';
Query OK, 0 rows affected (0,00 sec)

Retrait de privileges REVOKE

Sur une table particuliére

Le retrait de priviléges correspond a la syntaxe SQL, REVOKE. La syntaxe sui-
vante retire le privilége « DELETE » & « personnesadm@]localhost » sur la table
« personnes ».

mysgl> REVOKE DELETE ON CoursPHP.personnes FROM
personnesadm@localhost;

Query OK, 0 rows affected (0,00 sec)

Le privilege DELETE a disparu de la liste pour « personnesadm@localhost ».

mysgl> SHOW GRANTS FOR personnesadm@localhost;

|GRANT USAGE ON *.* TO 'personnesadm'@'localhost' IDENTIFI...
|GRANT SELECT, INSERT, UPDATE ON ‘CoursPHP'. 'personnes’ TO...

2 rows in set (0,00 sec)

Variations syntaxiques

74

Si on désire supprimer DELETE sur toutes les tables de toutes les bases de don-
nées, il faut saisir la syntaxe :

mysgl> REVOKE DELETE ON *.* FROM personnesadm@localhost;

Si on désire supprimer tous les priviléges sur toutes les tables de toutes les bases

de données, il faut saisir la syntaxe :

mysgl> REVOKE ALL PRIVILEGES ON *.* FROM
personnesadm@localhost;

On peut également appliquer cette syntaxe a plusieurs comptes : :

mysgl> REVOKE ALL PRIVILEGES ON *.* FROM
personnesadm@localhost, personnesadm@'$%';

Gestion des parameétres de connexion

Comme cela a été présenté au chapitre 10 dans la section phpMyAdmin, chaque
utilisateur possede des parametres de connexion comme le nombre maximal de
connexions autorisées. Ces paramétres sont définis dans la table « mysql.user ».

Problématique

La problématique et les conséquences de la mise en ceuvre d’une limitation ou non
des paramétres de connexion a été abordée avec phpMyAdmin.

Affichage des parametres

La syntaxe suivante affiche les paramétres de connexion :

max_questions (MAX QUERIES PER HOUR): le nombre de requétes en-
voyées au serveur, qu’un utilisateur peut exécuter par heure ;

max_updates (MAX UPDATES PER HOUR) : le nombre de commandes mo-
difiant une table ou base de données, qu’un utilisateur peut exécuter par heure ;
max_connections (MAX CONNECTIONS PER HOUR) : le nombre de nou-
velles connexions qu’un utilisateur peut démarrer, par heure ;
max_user_connections (MAX USER CONNECTIONS) : le nombre de con-
nexions simultanées pour un utilisateur.

mysgl> SELECT
max questions,max updates,max connections,max user_ connections
FROM mysql.user WHERE USER='clientsconsult';

tommm e tommm - tomm - Fommm +
Imax questions|max updates|max connections|max user connec... |
tommm e tommm - tomm - Fommm +
| 0] 0] 0l 0l
tommm e tommm - tomm - Fommm +

1 row in set (0,00 sec)

75

Modification des parametres

La syntaxe suivante modifie les parametres globaux de connexion pour I’utilisateur
« clientsconsult » avec comme valeur :

» max_questions (MAX QUERIES PER HOUR) =20 ;

» max_updates (MAX UPDATES PER HOUR)=10;

* max_connections (MAX CONNECTIONS PER HOUR)=5;

* max_user connections (MAX USER CONNECTIONS) = 15.

mysgl> GRANT ALL ON *.* TO 'clientsconsult'@'%' WITH
MAX QUERIES PER_HOUR 20 MAX UPDATES_ PER_HOUR 10

MAX | CONNECTIONS PER_HOUR 5 MAX USER CONNECTIONS 15;
Query OK, 0 rows affected (0, 00 sec)

L’affichage confirme la modification :

mysgl> SELECT
max questions,max updates,max connections,max user_ connections
FROM mysql.user WHERE USER='clientsconsult';

fomm - fomm - Fomm e Fom - +
Imax questions|max updates|max connections|max user connec \
fomm - fomm - Fomm e Fom - +
| 20| 10] 5 15]
fomm - fomm - Fomm e Fom - +

1 row in set (0,00 sec)

La syntaxe suivante limite les connexions & la base de données « CoursPHP »
lors de la création du compte « clientsconsult » via la syntaxe GRANT.

mysgl> GRANT ALL ON CoursPHP.* TO 'clientsconsult'@'$' WITH
MAX QUERIES PER HOUR 20 MAX UPDATES PER HOUR 10
MAX CONNECTIONS PER HOUR 5 MAX USER CONNECTIONS 15;

La suppression de la limitation revient a affecter ces parametres avec la valeur 0
qui indique qu’il n’y a aucune limite définie. La syntaxe devient :

mysgl> GRANT ALL ON *.* TO 'clientsconsult'@'$' WITH
MAX QUERIES PER_ HOUR 0 MAX UPDATES_ PER_HOUR 0
MAX | CONNECTIONS PER_HOUR 0 MAX USER CONNECTIONS 0;

Remarque
La limitation du nombre de connexions dépend du parametre MAX_USER_CONNECTIONS
de l'utilisateur mais aussi de la valeur de la variable systeme max_user_connections.

Renommer un compte utilisateur RENAME USER

Il est possible de renommer un compte utilisateur via la syntaxe RENAME USER.
La premiére syntaxe montre la liste des utilisateurs :

76

mysql> SELECT User, Host, Password FROM mysql.user;

Fom————— Fom——— Fom e +
|User |Host | Password |
Fom—————— Fom——— Fom e +
| root |localhost |*9C4FE4A10F01988F50D685C3F95155705. .. |
|root | linux |

	localhost	
	linux	
pma	localhost	*AC4D94A19F01998F50D68AC3FI51A8625. ..
personnesadm	localhost	*70828A978420F0614DEBA7174BF380835. ..
personnesadm	%	*70828A978420F0614DEBAT7174BF380835. ..
Fom—————— Fom——— Fom e +

7 rows in set (0,00 sec)

La syntaxe suivante renomme le compte personnesadm@'%' en personnescon-
sult@'%":

mysgl> RENAME USER personnesadm@'$' TO personnesconsult@'$';
Query OK, 0 rows affected (0,00 sec)

Le compte a bien été renommé :

mysql> SELECT User,Host,Password FROM mysql.user;

Fom Fom e i +
|User |Host | Password |
Fom Fom e it +
|root |localhost |*9C4FE4A10F01988F50D685C3F9515. .. |
| root | linux |

| | localhost|

	linux	
pma	localhost	*AC4D94A19F01998F50D68AC3F951A. . .
personnesadm	localhost	*70828A978420F0614DEBA7174BEF38. ..
personnesconsult	%	*70828A978420F0614DEBA7174BF38. ..
Fom Fom e it +

7 rows in set (0,00 sec)

Suppression d’un compte utilisateur DROP USER

La syntaxe pour supprimer un compte d’utilisateur est DROP USER. Voici com-
ment supprimer les deux comptes créés précédemment. La premiére syntaxe
montre la liste des utilisateurs :

mysql> SELECT User,Host,Password FROM mysql.user;

R o e e +
|User |Host | Password |
R o e e +
root	localhost	*9C4FE4A10F01988F50D685C3F9515. ..
root	linux	
	localhost	

77

| | linux |

|
pma	localhost	*AC4D94A19F01998F50D68AC3F951A. . .
personnesadm	localhost	*70828A978420F0614DEBA7174BEF38. ..
personnesconsult	%	*70828A978420F0614DEBA7174BF38. ..
Fom - e it e ettt e +

7 rows in set (0,00 sec)

Suppression du compte « personnesadm@]localhost » :

mysgl> DROP USER personnesadm@localhost;
Query OK, 0 rows affected (0,00 sec)

Suppression du compte « personnesconsult@% » :

mysgl> DROP USER personnesconsult@'$';
Query OK, 0 rows affected (0,00 sec)

L’affichage de la liste des utilisateurs confirme la suppression :

mysql> SELECT User,Host,Password FROM mysql.user;

B i e +
|User |Host | Password

B i e +
|root|localhost|*9C4FE4A10F01988F50D685C3F9515570588FEFDF |
|root|linux | \
| |localhost|

| | linux |

|pma |localhost|*AC4D94A19F01998F50D68AC3F951A862588AEFAS |
B i e +
5 rows in set (0,00 sec)

10-1.3 SECURISATION DE MYSQL

Sécurisation des comptes

Dans cette partie nous présentons les points de vigilance et les préconisations pour
sécuriser les acces au serveur MySQL.

78

Le compte root

Mot de passe

A T’installation de MySQL, un identifiant « root » est créé pour administrer le ser-
veur. Par défaut il ne posseéde aucun mot de passe. Il est impératif d’affecter un
mot de passe sur le compte « root ». Cet administrateur possede deux comptes,
selon le type d’acces.

mysql> SELECT User,Host,Password FROM mysql.user;

fom - e +
|User |Host | Password

fom - i +
|root|localhost|*9C4FE4A10F01988F50D685C3F9515570588FEFDF |
|root|linux | \
| |localhost|

| | linux |

|pma |localhost|*AC4D94A19F01998F50D68AC3F951A862588AEFAS |
fom - e +
5 rows in set (0,00 sec)

Il faut modifier le mot de passe du compte de « localhost », mais aussi des autres
comptes ayant une adresse IP d’un poste distant (ce qui n’est pas le cas de linux
dans I’exemple précédent). Cela peut se faire via phpMyAdmin, ou bien via la
syntaxe SQL :

mysql> SET PASSWORD FOR
root@localhost=PASSWORD ('nouveau_motdepasse');

Acceés a distance

Pour ce compte, il faut vérifier que I’acces a partir de n’importe quel poste de con-
nexion n’est pas ouvert. Cela se fait en tentant de se connecter en tant que « root »
a partir d’une poste distant.

Dans I’exemple suivant 1’acces distant est refusé. Le serveur MySQL possede
I’adresse IP 10.211.55.2. La syntaxe suivante tente d’établir la connexion, en tant
que « root », vers ce serveur a partir d’un poste distant 10.211.55.2 et échoue :

$ mysql --no-defaults -u root -h 10.211.55.16 -p

Enter password: xxxx

ERROR 1130 (HYO00): Host '10.211.55.2' is not allowed to
connect to this MySQL server

Si le compte « root » est ouvert en acces a partir de ’extérieur, il faut vérifier
que cela est limité au seul poste de travail habituel et personnel de la personne
qui administre le serveur MySQL. Dans notre exemple il s’agit de 1’ordinateur
« pdtadm.cnam.fr ».

mysql> SELECT User,Host,Password FROM mysql.user;

79

R et P o - +

|User|Host | Password

R et P Rt ettt +

|root|localhost | *9C4FE4A10F01988F50D685C3F9515570588. .. |

|root|linux | |

|root |pdtadm.cnam. fr|*9C4FE4A10F01988F50D685C3F9515570588. .. |
\
\
\
\

| | localhost |

| | linux |

|[pma |localhost | *AC4D94A19F01998F50D68AC3F951A862588. ..
|root|localhost | *9C4FE4A10F01988F50D685C3F9515570588. ..
fom - o - +

7 rows in set (0,01 sec)

Le compte anonyme

L’administrateur devra se poser la question du bien fondé de laisser 1’acces a son
serveur via un compte anonyme sans mot de passe. Que n’importe qui puisse accé-
der au serveur MySQL et ait tous les droits sur une base « test» peut paraitre
« anormal ». Si tel est le cas, il faudra supprimer les comptes anonymes.

On affiche la liste des comptes :

mysql> SELECT User,Host,Password FROM mysql.user;

fom - e +
|User |Host | Password

fom - e +
|root|localhost|*9C4FE4A10F01988F50D685C3F9515570588FEFDF |
|root|linux | \
[|localhost| |
| | linux | |
|pma |localhost|*AC4D94A19F01998F50D68AC3F951A862588AEFAS |
fom - e +
5 rows in set (0,01 sec)

On supprime les deux comptes anonymes (sans login) :

mysgl> DROP USER ''@localhost;

Query OK, 0 rows affected (0,00 sec)
mysgl> DROP USER ''@linux;

Query OK, 0 rows affected (0,00 sec)

Les comptes anonymes sont bien supprimés :

mysql> SELECT User,Host,Password FROM mysql.user;

Fomm - o +
|User|Host | Password

Fomm - o +
|root|localhost|*9C4FE4A10F01988F50D685C3F9515570588FEFDF |
|root|linux | \
|pma |localhost|*AC4D94A19F01998F50D68AC3F951A862588AEFAS |

80

fom - e it +
3 rows in set (0,00 sec)

Si un compte anonyme existe pour une connexion depuis n’importe quel poste
(le caractere '%' apparait dans la colonne « Host »), sa suppression se note :

mysql> DROP USER ''@'%';
Query OK, 0 rows affected (0,00 sec)

La base de test

De la méme maniere, I’administrateur devra se poser la question du bien fondé de
conserver une base « test », ou de toute base dont le nom commence par « test ».
Pour supprimer ces bases de données il suffit de saisir :

mysql> DROP DATABASE test;
mysql> DELETE FROM mysql.db WHERE Db='test' OR Db='test_%';

Script de sécurisation

MySQL propose un script shell de sécurisation mysgl secure installation,
qui effectue les taches précédentes. Sous Linux, pour I’exécuter il faut saisir :

$ /opt/lampp/bin/mysql secure installation

Puis il suffit de répondre aux questions posées. On affiche I’état des comptes et
des bases de données du serveur avant de lancer le script de sécurisation :

$ mysql --no-defaults -u root -h localhost -p

Enter password: xxxx

Welcome to the MySQL monitor. Commands end with ; or \g...
mysql> SELECT User,Host,Password FROM mysql.user;

Fomm - o +
|User|Host | Password

Fomm - o +
|root|localhost|*9C4FE4A10F01988F50D685C3F9515570588 FEFDF |
|root|linux | \
| | localhost|

| |linux |

|pma |localhost|*AC4D94A19F01998F50D68AC3F951A862588AEFAS |

5 rows in set (0,00 sec)
mysgl> SHOW databases;

o +
| Database |
o +
|information schema|
|CoursPHP |
|cdcol |

81

Imysqgl |
|performance schema|
|phpmyadmin |
| test |

7 rows in set (0,00 sec)
mysqgl> QUIT;
Bye

On exécute le script mysgl secure installation

$ /opt/lampp/bin/mysql_ secure_installation

NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL
MySQL SERVERS IN PRODUCTION USE! PLEASE READ EACH STEP
CAREFULLY!

In order to log into MySQL to secure it, we'll need the
current password for the root user. If you've just installed
MySQL, and you haven't set the root password yet, the password
will be blank, so you should just press enter here.

Enter current password for root (enter for none): xXxxx

OK, successfully used password, moving on...

Setting the root password ensures that nobody can log into the
MySQL root user without the proper authorisation.

You already have a root password set, so you can safely answer
'n'.

Change the root password? [Y/n] Y

New password: XXXx

Re-enter new password: XXxXxX

Password updated successfully!

Reloading privilege tables..... Success!

By default, a MySQL installation has an anonymous user,
allowing anyone to log into MySQL without having to have a
user account created for them. This is intended only for
testing, and to make the installation

go a bit smoother. You should remove them before moving into
a production environment.

Remove anonymous users? [Y/n] Y

Success!
Normally, root should only be allowed to connect from
'localhost'. This ensures that someone cannot guess at the

root password from the network.
Disallow root login remotely? [Y/n] Y

Success!
By default, MySQL comes with a database named 'test' that
anyone can access. This is also intended only for testing, and
should be removed before moving into a production environment.
Remove test database and access to it? [Y/n] Y

- Dropping test database...
Success!

82

- Removing privileges on test database...
Success!
Reloading the privilege tables will ensure that all changes
made so far will take effect immediately.
Reload privilege tables now? [Y/n] Y
Success!
All done! If you've completed all of the above steps, your
MySQL installation should now be secure. Thanks for using
MySQL!
Cleaning up...

Attention de bien vérifier qu’il n’y a aucune erreur ! Il se peut que lors de la
suppression de la base « test », I’erreur suivante se produise.

Remove test database and access to it? [Y/n] Y
- Dropping test database...
ERROR 1010 (HY000) at line 1: Error dropping database (can't
rmdir './test/', errno: 17)
Failed! Not critical, keep moving...
- Removing privileges on test database...
Success!

Cela provient du fait que la tentative de suppression du répertoire « test », via la
commande « rmdir ./test/ », échoue. Ce répertoire contient les données de la base
« test » et doit étre totalement vide, ce qui n’est pas le cas. En fait il contient encore
un fichier (vide) dont le nom est « NOTEMPTY » :

$ sudo ls -al /opt/lampp/var/mysql/test/NOTEMPTY
-rw-r--r-- 1 mysgl mysgl 0 juin 26 2013
/opt/lampp/var/mysql/test/NOTEMPTY

11 suffit supprimer ce fichier :
$ sudo rm /opt/lampp/var/mysql/test/NOTEMPTY

Puis relancer I’exécution du script mysql secure installation, pour sup-
primer Derreur. L’affichage des comptes utilisateurs et des bases de données con-
firme la sécurisation :

$ mysql --no-defaults -u root -h localhost -p
Enter password: xxxx
Welcome to the MySQL monitor. Commands end with ; or \g...

Les comptes anonymes ou n’ayant aucun mot de passe ont disparus :

mysql> SELECT User,Host,Password FROM mysql.user;

fom - e +
|User |Host | Password
fom - e +
|root|localhost|*9C4FE4A10F01988F50D685C3F9515570588FEFDF |

83

|pma |localhost|*AC4D94A19F01998F50D68AC3F951A862588AEFAS |
tomm e et +
2 rows in set (0,01 sec)

La base « test » a disparue :

mysgl> SHOW databases;

|information schema|
|CoursPHP |
| cdcol |
Imysqgl |
|performance schema|
|phpmyadmin |

6 rows in set (0,00 sec)
mysgl> QUIT;
Bye

Sécurisation réseau

Si votre serveur MySQL est accédé uniquement par votre site web, alors il faut
sécuriser son acces réseau, du reste du monde. Il faut restreindre 1’acces du ser-
veur MySQL au seul serveur web qui accéde a la base de données.

La figure 10-1.8 présente cette architecture type de sécurisation des serveurs via
les matériels réseaux (routeurs par exemple). Les serveurs « phy-
siques » hébergeant Apache et MySQL sont distincts.

Le serveur Apache est dans la DMZ (Zone Démilitarisée), ce qui donne un acces
complet au site web de 1’entreprise depuis Internet.

Le serveur MySQL est dans I’intranet, inaccessible depuis Internet. Seul le ser-
veur physique Apache, peut accéder au serveur physique MySQL, via le port de
communication réseau (3306 par exemple pour le service MySQL). Ce contrdle
d’acces peut étre mis en ceuvre via un routeur.

Ainsi aucun ordinateur extérieur a I’entreprise ne peut accéder directement au
serveur MySQL. L’administrateur devra se connecter a partir d’un poste de
I’intranet, ou bien utiliser un VPN (Réseau Privé Virtuel) installé sur son poste
personnel extérieur a I’entreprise.

84

Poste client/Navigateur Web

Interrogation

Affichage
T Réseau de I'entreprise

Serveur Web

Serveur MySQL

Serveur
Apache

|| My

Requétes MySQL Prénom

L MARTIN | Pierre

5

—_— 5
C—
Réponses MySQL

L]

a

Intranet

DMz

Figure 10-1.8

Sécurisation réseau du serveur MySQL.

10-1.4 PDO - PHP DATA OBJECTS — COMPLEMENT

Présentation

\

PDO est un outil complet donnant accés, a partir d’un programme PHP, a
n’importe quel type de base de données, comme MysQL, PostgeSQL ou Oracle. 11
a été présenté au chapitre 10.

Programmes PHP avec filtrage et fonctions SQL

Les différentes requétes ont été présentées au chapitre 10. Cette section présente
des exemples de programmes utilisant le filtrage avec la clause WHERE et des
fonctions SQL.

Le filtrage

Les programmes suivants, téléchargeables sur le site de 1’éditeur, présentent les
versions shell et web pour une clause WHERE avec un ORDER BY sur I’age.

* MySQL PDO query fetch where order by personnes shell.php

* MySQL PDO query fetch where order by personnes web.php

Les programmes suivants, téléchargeables sur le site de 1’éditeur, présentent les

versions shell et web pour une clause WHERE sur 1’age ou le prénom, avec un ORDER
BY sur le nom et une LIMIT a 5.

* MySQL PDO_query fetch where order by limit personnes shell.php
* MySQL PDO_query fetch where order by limit personnes web.php

85

Les fonctions d’agrégat

Cette section présente des exemples d’appels de fonctions d’agrégat. Les pro-
grammes suivants sont les versions shell et web de I’appel de la fonction AVG ()
avec une clause GROUP BY.

MySQL PDO_query fetch round avg group by clients shell.php
MySQL PDO_query fetch round avg group by clients web.php
Voici I’exécution du programme

MySQL PDO query fetch round avg group by clients shell.php.

Listing 10-1.1 : Exécution de
MySQL_PDO_query_fetch_round_avg_group_by_clients_shell.php

$ php
MySQL PDO_query fetch round avg group by clients shell.php

Marié 150.22
Célibataire 975.67
Veuf 6774.73
Divorcé 102.21
Décédé 1825.54

La figure 10-1.9 présente le résultat de I’exécution du programme

MySQL PDO query fetch round avg group by clients web.php.

Solde moyen des comptes clients par Etat Civil

Etat_Civil solde_moyen

Marié 150.22

Célibataire 975.67

Veuf 6774.73

Divorcé 102.21

Décédé 1825.54

Figure 10-1.9

Affichage web query-fetch-round-avg.

Les programmes suivants présentent les versions shell et web pour les fonctions

ROUND () et SUM () avec des clauses GROUP BY et HAVING.

MySQL PDO query fetch round sum group by having clients shell.
php

MySQL PDO query fetch round sum group by having clients web.ph
P

86

Voici I’exécution du programme
MySQL PDO query fetch round sum group by having clients shell.ph
p. L’affichage de certaines colonnes a été tronqué.

Listing 10-1.2 : Exécution de
MySQL_PDO_query_fetch_round_sum_group_by_having_clients_shell.php

S php
MySQL PDO query fetch round sum group by having clients shell.
php

ID Nom Prenom Age Date Naissance Etat Civil Nb En Solde
1 DUPONT JEAN 27 1987-12-28 Marié 2 1200.5
2 JACQUENOD JEAN-CHRIST 54 1961-02-10 Marié 1 -308.87
3 MURCIAN CAROLE 44 1970-10-20 Célib 1 3548.98
4 LERY JEAN-MICHEL 25 1989-05-07 Marié 2 -18.98
5 DE-LA-RUE JEAN-CHRIST 23 1991-06-18 Divor 0 -27.44
6 MARTIN PAUL-DAVID 23 1991-08-22 Célib 0 206.21
7 MARTIN PIERRE 56 1959-01-18 veuf 3 1234.56
8 JACQUENOD FREDERIC 25 1989-11-27 Marié 0 432.98
9 JACQUENOD LAURENCE 24 1990-11-01 Marié 0 -203.18
10 DUMOULIN JEAN-CHRIST 54 1960-08-22 Marié 2 -2186.86
11 LABONNE-JAYAT OLIVIER 54 1960-09-23 Célib 1 -65.98
12 DE-LA-FONTAINE JEAN 110 1905-01-22 Décéd 0 1825.54
13 LEVY SAMUEL 56 1959-03-27 Divor 3 231.87
14 DE-LA-RUE LAURENCE 25 1989-12-13 Marié 1 2135.98
15 DUPONT JEAN 54 1960-10-15 veuf 2 12314.9
16 MARTIN ALBERT 25 1989-08-15 Célib 1 213.49

Liste des clients ayant un solde total dépassant (ex: 1000)
1000

56 1466.43
110 1825.54

La figure 10-1.10 présente le résultat de I’exécution du programme
MySQL PDO query fetch round sum group by having clients web.php.

87

Le premier écran (1) affiche les clients et le formulaire de saisie du filtrage. Le
second (2) affiche le résultat du traitement.

P Liste des clients
D (1 Nom | Prenom | Age Date_Naissance | Etat_Civil Nb_Enfants | Solde
1 DUPONT JEAN 27 1987-12-28 Marié 2 1200.5
2 I JACQUENOD [JEAN-CHRISTOPHE [54 1961-02-10 Marié | 1 [-308.87
3 MURCIAN | CAROLE [44 1970-10-20 Célibataire | 1 [3548.98
4 LERY JEAN-MICHEL 25 1989-05-07 Marié 2 -18.98
5 DE-LA-RUE | JEAN-CHRISTOPHE [23 1991-06-18 Divorcé | 0 [-27.44
6 MARTIN PAUL-DAVID 23 1991-08-22 Célibataire 0 206.21
7 MARTIN PIERRE 56 1959-01-18 Veuf 3 1234.56
8 JACQUENOD FREDERIC 25 1989-11-27 Marié 0 432.98
9 JACQUENOD | LAURENCE [24 1990-11-01 Marie | 0 | 20318
10 DUMOULIN JEAN-CHRISTOPHE 54 1960-08-22 Marié 2 -2186.86
1" LABONNE-JAYAT | OLIVIER [54 1960-09-23 Célibataire | 1 [-65.98
12 DE-LA-FONTAINE | JEAN I 10 1905-01-22 Décédé | 0 [1825.54
13 LEVY SAMUEL 56 1959-03-27 Divorcé 3 23187
14 DE-LA-RUE | LAURENCE | 25 1989-12-13 Marié | 1 | 2135.98
15 DUPONT JEAN 54 1960-10-15 Veuf 2 123149
16 MARTIN ALBERT 25 1989-08-15 Celbataire | 1 [21349
Liste des clients ayant un solde total dépassant : 1
Solde total des comptes clients par dge
Entrez le seuil du solde total au
1000 2 Age solde_total
() 25 2763.47
Valider le filtrage Effg 27 1200.50
44 3548.98
54 9753.19
- 56 1466.43
10 1825.54

Figure 10-1.10
Affichage web query-fetch-round-sum-groupby.

Les fonctions sur les chaines de caractéres

Cette section présente des exemples de fonctions sur les chaines de caractéres.
Les programmes suivants sont les versions shell et web de ’appel des fonctions
CONCAT () et LOWER () sur le Prénom et le Nom.

* MySQL PDO_query fetch concat lower clients shell.php
* MySQL PDO_query fetch concat lower clients web.php

Voici I’exécution du programme
MySQL PDO _query fetch concat lower clients shell.php.

Listing 10-1.3 : Exécution de
MySQL_PDO_query_fetch_concat_lower_clients_shell.php

1 jean DUPONT 1987-12-28

88

2 jean-christophe JACQUENOD 1961-02-10
3 carole MURCIAN 1970-10-20
4 jean-michel LERY 1989-05-07
5 jean-christophe DE-LA-RUE 1991-06-18
6 paul-david MARTIN 1991-08-22
7 pierre MARTIN 1959-01-18
8 frederic JACQUENOD 1989-11-27
9 laurence JACQUENOD 1990-11-01
10 jean-christophe DUMOULIN 1960-08-22
11 olivier LABONNE-JAYAT 1960-09-23
12 jean DE-LA-FONTAINE 1905-01-22
13 samuel LEVY 1959-03-27
14 laurence DE-LA-RUE 1989-12-13
15 Jjean DUPONT 1960-10-15
16 albert MARTIN 1989-08-15
La figure 10-1.11 présente le résultat de 1’exécution du programme

MySQL PDO query fetch concat lower clients web.php.

Concaténation des prénoms et des noms
ID prenom_nom Date_Naissance
1 jean DUPONT 1987-12-28
2 jean-christophe JACQUENOD 1961-02-10
3 carole MURCIAN 1970-10-20
4 jean-michel LERY 1989-05-07
5 jean-christophe DE-LA-RUE 1991-06-18
6 paul-david MARTIN 1991-08-22
7 pierre MARTIN 1959-01-18
8 frederic JACQUENOD 1989-11-27
9 laurence JACQUENOD 1990-11-01
10 jean-christophe DUMOULIN 1960-08-22
1" olivier LABONNE-JAYAT 1960-09-23
12 jean DE-LA-FONTAINE 1905-01-22
13 samuel LEVY 1959-03-27
14 laurence DE-LA-RUE 1989-12-13
15 jean DUPONT 1960-10-15
16 albert MARTIN 1989-08-15

Figure 10-1.11

Affichage web query-fetch-concat-lower.

Les fonctions mathématiques

Cette section présente des exemples de fonctions mathématiques. Les pro-
grammes suivants sont les versions shell et web de ’appel de la fonction TRUN-
CATE () sur le solde.

* MySQL PDO_query fetch truncate clients shell.php

89

* MySQL PDO_query fetch truncate clients web.php

Voici I’exécution du programme
MySQL PDO query fetch truncate clients shell.php.

Listing 10-1.4 : Exécution de MySQL_PDO_query_fetch_truncate_clients_shell.php
$ php MySQL PDO query fetch truncate clients shell.php

ID Nom Prenom Solde Entier
1 DUPONT JEAN 1200
2 JACQUENOD JEAN-CHRISTOPHE -308
3 MURCIAN CAROLE 3548
4 LERY JEAN-MICHEL -18
5 DE-LA-RUE JEAN-CHRISTOPHE -27
6 MARTIN PAUL-DAVID 206
7 MARTIN PIERRE 1234
8 JACQUENOD FREDERIC 432
9 JACQUENOD LAURENCE -203
10 DUMOULIN JEAN-CHRISTOPHE -2186
11 LABONNE-JAYAT OLIVIER -65
12 DE-LA-FONTAINE JEAN 1825
13 LEVY SAMUEL 231
14 DE-LA-RUE LAURENCE 2135
15 DUPONT JEAN 12314
16 MARTIN ALBERT 213

La figure 10-1.12 présente le résultat de I’exécution du programme
MySQL PDO query fetch truncate clients web.php.

90

Solde entier

D Nom Prenom Solde_Entier
1 DUPONT JEAN 1200
2 JACQUENOD JEAN-CHRISTOPHE -308
3 MURCIAN CAROLE 3548
4 LERY JEAN-MICHEL -18
5 DE-LA-RUE JEAN-CHRISTOPHE -27
6 MARTIN PAUL-DAVID 206
7 MARTIN PIERRE 1234
8 JACQUENOD FREDERIC 432
9 JACQUENOD LAURENCE -203
10 DUMOULIN JEAN-CHRISTOPHE -2186
1 LABONNE-JAYAT OLIVIER -65
12 DE-LA-FONTAINE JEAN 1825
13 LEVY SAMUEL 231
14 DE-LA-RUE LAURENCE 2135
15 DUPONT JEAN 12314
16 MARTIN ALBERT 213

Figure 10-1.12
Affichage web query-fetch-truncate.

Les fonctions de dates et d’heures

Cette section présente des exemples de fonctions de dates et d’heures. Les pro-
grammes suivants sont les versions shell et web du filtrage selon la date de nais-
sance.

* MySQL PDO_query fetch filtre date naissance clients shell.php

* MySQL PDO_query fetch filtre date naissance clientsl web.php

* MySQL PDO_query fetch filtre date naissance clientslb web.php

* MySQL PDO_query fetch filtre date naissance clients2 web.php
Ces programmes demandent de saisir une date au format JJ/MM/AAAA. 1l faut

vérifier la validité de cette date puis la convertir au format AAAA-MM-1J spéci-
fique a la base de données.
Deux fonctions ont été écrites pour la validation et la conversion :

* ValidationDate (): Cette fonction admet deux paramétres : la date, et le for-
mat de cette date. Elle retourne un booléen qui indique si la date est valide et si
elle est conforme au format indiqué. Par exemple :
¢ ValidationDate('2012-02-28', 'Y-m-d')); est VRAI
4 ValidationDate('30/02/2012', 'd/m/Y")) ; est FAUX
¢ ValidationDate('2012-02-28T12:12:12+02:00', "Y-m-d\TH:i:sP")); est VRAI
4 ValidationDate('Tue, 28 Feb 2012 12:12:12 +0200', 'D, d M Y H:i:s O")); est

VRAI
¢ ValidationDate('14:50', 'H:1")); est VRAI
4 ValidationDate('14:77', 'H:1")); est FAUX

91

* ConversionDate (): Cette fonction admet trois parametres : la date, le format
de départ, le format cible. Elle retourne la date indiquée, convertie dans le for-
mat cible. Le format de départ indique comment lire la date fournie en argument.
Par exemple :

4 ConversionDate('2012-02-28'","Y-m-d','d/m/Y"); retourne 28/02/2012

4 ConversionDate('2012-02-30","Y-m-d','d/m/Y"); retourne 01/03/2012

4 ConversionDate('28/02/2012', 'd/m/Y", 'Y-m-d'); retourne 2012-02-28

4 ConversionDate('30/02/2012', 'd/m/Y", "Y-m-d'); retourne 2012-03-01

Ces deux fonctions utilisent la méthode createFromFormat () de la classe
d’objet DateTime et la méthode date default timezone set (). Il est néces-

saire de définir le « timezone » pour le bon fonctionnement de cette méthode avec
I’instruction :

date default timezone set ("Europe/Paris");

Ces deux fonctions sont stockées dans
MySQL include sprog commun_shell.php et
MySQL include sprog commun_web.php.

Ces deux fichiers contiennent les sous-programmes utilisés respectivement dans
les versions shell et web des programmes. Il sont inclus au début de chaque pro-
gramme par |’instruction :

include '../../INCLUDE/MySQL include sprog commun_shell.php';

Voici ces deux fonctions PHP :

// -- Fonctions de vérification et de conversion des dates --
date_default_ timezone_set("Europe/Paris");

// -- validation d'un format de date --

function ValidationDate ($date_dep, $format = 'Y-m-d H:i:s')

{ Sdate cree=DateTime::createFromFormat ($format, Sdate dep);
return (Sdate cree && (Sdate cree->format ($format) ==

$date dep));

}

// -- Conversion d'un format de date --

function

ConversionDate ($date_dep,$format dep='d/m/Y',$format _cible='Y-

m-d')

{Sdate cree=DateTime::createFromFormat ($format dep, $date dep);
$date cible=Sdate cree->format ($format cible);

return Sdate cible;

}

Le programme
MySQL PDO query fetch filtre date naissance clients shell.php
utilise la fonction SQL DATE FORMAT pour transformer la date du format AAAA-
MM-JJ au format JJ/MM/AAAA.

92

Voici la ligne de ce programme qui effectue cette requéte :

// -- Exécution de la requéte --

Sreponse = $bdd->query ('SELECT

ID,Nom, Prenom, DATE FORMAT (Date Naissance,\'%d/%m/%$Y\') As
Date Naissance FROM clients');

Voici un exemple d’exécution :

Listing 10-1.5 : Exécution de
MySQL_PDO_query_fetch_filtre_date_naissance_clients_shell.php

$ php
MySQL PDO_query fetch filtre date naissance clients shell.php

ID Nom Prenom Date Naissance
1 DUPONT JEAN 28/12/1987
2 JACQUENOD JEAN-CHRISTOPHE 10/02/1961
3 MURCIAN CAROLE 20/10/1970
4 LERY JEAN-MICHEL 07/05/1989
5 DE-LA-RUE JEAN-CHRISTOPHE 18/06/1991
6 MARTIN PAUL-DAVID 22/08/1991
7 MARTIN PIERRE 18/01/1959
8 JACQUENOD FREDERIC 27/11/1989
9 JACQUENOD LAURENCE 01/11/1990
10 DUMOULIN JEAN-CHRISTOPHE 22/08/1960
11 LABONNE-JAYAT OLIVIER 23/09/1960
12 DE-LA-FONTAINE JEAN 22/01/1905
13 LEVY SAMUEL 27/03/1959
14 DE-LA-RUE LAURENCE 13/12/1989
15 DUPONT JEAN 15/10/1960
16 MARTIN ALBERT 15/08/1989

Afficher la liste des clients dont la date de naissance est
supérieure a (ex: 01/01/1970) : 01/01/1970

ID Nom Prenom Date Naissance
1 DUPONT JEAN 28/12/1987
3 MURCIAN CAROLE 20/10/1970
4 LERY JEAN-MICHEL 07/05/1989
5 DE-LA-RUE JEAN-CHRISTOPHE 18/06/1991
6 MARTIN PAUL-DAVID 22/08/1991
8 JACQUENOD FREDERIC 27/11/1989

93

9 JACQUENOD LAURENCE 01/11/1990

14 DE-LA-RUE LAURENCE 13/12/1989
16 MARTIN ALBERT 15/08/1989
Le programme

MySQL PDO_query fetch filtre date naissance clientsl web.php uti-
lise un formulaire HTMLS5 pour controler la saisie du format de la date. Voici les
lignes de ce programme concernant le formulaire :

<form

action="MySQL PDO query fetch filtre date naissance clientsl w
eb.php" method="post">

<fieldset>

<legend>Liste des clients dont la date de naissance est
supé rieure à :</legend>

Entrez la date de naissance a partir de laquelle les clients
seront affichés a (ex: 01/01/1970) : <input type="text"
name="DateNaissance" size="10" maxlength="10" pattern="[0-
91{2}/10-91{2}/[0-9]{4}" />

<input type="submit" name="valider" wvalue="Valider le
filtrage" />

<input type="reset" value="Effacer le formulaire" />
</fieldset>

</form>

La figure 10-1.13 présente le résultat de I’exécution du programme
MySQL PDO query fetch filtre date naissance clientsl web.php.

94

. Liste des clients
1' 1 } D Nom Prenom | Date_Naissance
AN J/ 1 DUPONT JEAN | 28/12/1987
2 JACQUENOD JEAN-CHRISTOPHE 10/02/1961
3 MURCIAN CAROLE [20/10/1970
4 LERY JEAN-MICHEL [07/05/1989
5 [DE-LA-RUE JEAN-CHRISTOPHE ‘ 18/06/1991
6 [MARTIN PAUL-DAVID ‘ 22/08/1991
7 MARTIN PIERRE ‘ 18/01/1959
8 JACQUENOD FREDERIC | 27/11/1989
9 JACQUENOD LAURENCE | 01/11/1990
10 | DUMOULIN | JEAN-CHRISTOPHE | 22/08/1960
1" [LABONNE-JAYAT OLIVIER | 23/09/1960
12 [DE-LA-FONTAINE JEAN | 22/01/1905
13 [LEVY SAMUEL | 27/03/1959
14 [DE-LA-RUE LAURENCE | 13/12/1989
15 [DUPONT | JEAN | 15/10/1960
16 [MARTIN ALBERT | 15/08/1989
Liste des clients dont la date de naissance est supérieure a
Entrez la date de naissance a partir de laquelle les clients seront affichés a (ex:
01/01/1970): 01/01/1870 Liste des clients ayant une date de naissance >= 01/01/1970
W4 D Nom Prenom Date_Naissance
Valider le filtrage Effacerlef{ || 2 I T DUPONT JEAN 281211987
— Nt 3 MURCIAN CAROLE | 20/10/1970
4 LERY JEAN-MICHEL | 07/05/1989
5 DE-LA-RUE JEAN-CHRISTOPHE 18/06/1991
6 MARTIN PAUL-DAVID [22/08/1991
8 JACQUENOD FREDERIC [27/11/1989
9 JACQUENOD LAURENCE 01/11/1990
14 DE-LA-RUE | LAURENCE 13/12/1989
16 MARTIN ALBERT | 15/08/1989

Figure 10-1.13
Affichage web query-fetch-filtre date-1.

HTMLS5 autorise le nouveau type « date » en lieu et place de « text ». Ce type
« date » permet la saisie d’une date dans un calendrier. La syntaxe suivante a été
intégrée dans le programme
MySQL PDO query fetch filtre date naissance clientslb web.php.

Entrez la date de naissance a partir de laquelle les clients
seront affichés a (ex: 01/01/1970) : <input type="date"
name="DateNaissance" size="10" maxlength="10" />

Malheureusement, au moment de la rédaction de cet ouvrage, le type « date »
n’est pas supporté par I’ensemble des navigateurs. Firefox le reconnait comme type
« text », et ne propose aucun calendrier de saisie. Chrome propose un calendrier de
saisie, mais le format envoyé par défaut via le formulaire est noté en anglo-saxon,
ce qui provoque un échec du filtrage du programme PHP tel qu’il est écrit.

Le programme
MySQL PDO query fetch filtre date naissance clients2 web.php.
utilise « datepicker » de la bibliothéque JQuery pour permettre la saisie de la date
dans un calendrier. Cette saisie est opérationnelle quelque soit le navigateur. Voici
les lignes de syntaxes qui implémentent cette saisie, avec un calendrier en frangais :

95

<!DOCTYPE html>
<html>
<head> <!-- Entéte HTML -->
<meta charset="utf-8" />
<title>Affichage de la table clients</title>
<link href="../../CSS/MySQL.css" rel="stylesheet"
type="text/css" />
<link rel="stylesheet"
href="//code.jquery.com/ui/1.11.4/themes/smoothness/jquery-
ui.css">
<script src="//code.jquery.com/jquery-1.10.2.js"></script>
<script src="//code.jquery.com/ui/1.11.4/jquery-
ui.js"></script>
<script>
$.datepicker.regional['fr'] = {
closeText: 'Fermer',
prevText: 'Précédent',

nextText: 'Suivant',
currentText: 'Aujourd\'hui',
monthNames:

['Janvier', 'Février', 'Mars', 'Avril', 'Mai', "Juin', 'Juillet', 'Ao
at', 'Septembre’', 'Octobre', "Novembre', 'Décembre'],
monthNamesShort:
['Janv.','Févr.', '"Mars', 'Avril', 'Mai', 'Juin', "Juil."', 'AolGt"', 'S
ept.','Oct.', 'Nov."','Déc."'],
dayNames:
['"Dimanche', 'Lundi', 'Mardi', 'Mercredi', '"Jeudi', 'Vendredi', 'Sam
edi'],

dayNamesShort:
['"Dim."', 'Lun."', '"Mar.', '"Mer."', 'Jeu.','Ven."', 'Sam."'],
dayNamesMin: ['D','L','M','M','J','V','S"'],

weekHeader: 'Sem.',
dateFormat: 'dd/mm/yy',
firstDay: 1,
isRTL: false,
showMonthAfterYear: false,
yearSuffix: ''
}:
$.datepicker.setDefaults ($.datepicker.regional['fr']);
S (function() {
$("#datepicker").datepicker();
1)
</script>
</head>
<body>

-- formulaire de saisie du critere de filtrage --

<form
action="MySQL PDO query fetch filtre date naissance clients2 w
eb.php" method="post">

<fieldset>

<legend>Liste des clients dont la date de naissance est
supé rieure à :</legend>

Entrez la date de naissance a partir de laquelle les
clients seront affichés a : <input type="text"
class="datepick" name="DateNaissance">

<input type="submit" name="valider" value="Valider le
filtrage" />

<input type="reset" value="Effacer le formulaire" />

</fieldset>

</form>

<script type="text/javascript">
$ (document) .ready (function () {

$('.datepick') .datepicker ({ dateFormat: "dd/mm/yy"});
1)
</script>

La figure 10-1.14 présente I’écran de saisie. Le format de la date envoyée est
bien en francais JI/MM/AAAA, le filtrage fonctionne parfaitement.

97

Liste des clients

D Nom Prenom Date_Naissance
1 DUPONT JEAN 28/12/1987
2 JACQUENOD JEAN-CHRISTOPHE 10/02/1961
3 MURCIAN CAROLE 20/10/1970
4 LERY JEAN-MICHEL 07/05/1989
5 DE-LA-RUE JEAN-CHRISTOPHE 18/06/1991
6 MARTIN PAUL-DAVID 22/08/1991
7 MARTIN PIERRE 18/01/1959
8 JACQUENOD FREDERIC 27/11/1989
9 JACQUENOD LAURENCE 01/11/1990
10 DUMOULIN JEAN-CHRISTOPHE 22/08/1960
11 LABONNE-JAYAT OLIVIER 23/09/1960
12 DE-LA-FONTAINE JEAN 22/01/1905
13 LEVY SAMUEL 27/03/1959
14 DE-LA-RUE LAURENCE 13/12/1989
15 DUPONT JEAN 15/10/1960
16 MARTIN ALBERT 15/08/1989
r—Liste des clients dont la date de naissance est supérieurea : ———
Entrez la date de naissance a partir de laquelle les clients seront affichés a :
01/01/1970
o Janvier 1970 0 e
Ll L M M J vV §D

1 2 3 4

5 6 7 8 910 1

12 13 14 15 16 17 18

19 20 21 22 23 24 25
26 27 28 29 30 31

Figure 10-1.14
Affichage web query-fetch-filtre date-2.

Les programmes suivants présentent les versions shell et web effectuant le calcul
de I’age a partir de la date de naissance.

* MySQL PDO_query fetch calcul age clients shell.php
* MySQL PDO_query fetch calcul age clients web.php

Voici I’exécution du programme
MySQL PDO_query fetch calcul age clients shell.php.

Listing 10-1.6 : Exécution de MySQL_PDO_query_fetch_calcul_age_clients_shell.php
$ php MySQL PDO query fetch calcul age clients shell.php

ID Nom Prenom Age Age calculé
1 DUPONT JEAN 27 27
2 JACQUENOD JEAN-CHRISTOPHE 54 54
3 MURCIAN CAROLE 44 44
4 LERY JEAN-MICHEL 25 25
5 DE-LA-RUE JEAN-CHRISTOPHE 23 23

98

6 MARTIN PAUL-DAVID 23 23
7 MARTIN PIERRE 56 56
8 JACQUENOD FREDERIC 25 25
9 JACQUENOD LAURENCE 24 24
10 DUMOULIN JEAN-CHRISTOPHE 54 54
11 LABONNE-JAYAT OLIVIER 54 54
12 DE-LA-FONTAINE JEAN 110 110
13 LEVY SAMUEL 56 56
14 DE-LA-RUE LAURENCE 25 25
15 DUPONT JEAN 54 54
16 MARTIN ALBERT 25 25

la figure 10-1.15 présent le résultat de I’exécution du programme
MySQL PDO _query fetch calcul age clients web.php.

Calcul de I'age
ID Nom Prenom Age Age_calculé
1 DUPONT JEAN 27 27
2 JACQUENOD JEAN-CHRISTOPHE 54 54
3 MURCIAN CAROLE 44 44
4 LERY JEAN-MICHEL 25 25
5 DE-LA-RUE JEAN-CHRISTOPHE 23 23
6 MARTIN PAUL-DAVID 23 23
7 MARTIN PIERRE 56 56
8 JACQUENOD FREDERIC 25 25
9 JACQUENOD LAURENCE 24 24
10 DUMOULIN JEAN-CHRISTOPHE 54 54
1" LABONNE-JAYAT OLIVIER 54 54
12 DE-LA-FONTAINE JEAN 110 110
13 LEVY SAMUEL 56 56
14 DE-LA-RUE LAURENCE 25 25
15 DUPONT JEAN 54 54
16 MARTIN ALBERT 25 25

Figure 10-1.15
Affichage web query-fetch-filtre calcul age.

Les jointures internes
Cette section présente des exemples de jointure interne. Les deux tables servant
de support aux jointures sont :
* clients bancaires :contient la liste des clients ;
* comptes bancaires : contient la liste des comptes bancaires. Un des champs
indique I’ID du propriétaire ;
Les programmes suivants sont les versions shell et web d’une jointure interne
avec la clause WHERE.
* MySQL PDO_query fetch jointure interne wherel shell.php
* MySQL PDO_query fetch jointure interne wherel web.php

99

Voici

I’exécution

Listing 10-1.7 : Exécution de
MySQL_PDO_query_fetch_jointure_interne_where1_shell.php

du

programme

MySQL PDO query fetch jointure interne wherel shell.php.

$ php MySQL PDO query fetch jointure interne wherel shell.php

DUPONT
DUPONT
DUPONT
JACQUENOD
JACQUENOD
JACQUENOD
MURCIAN
MURCIAN
MURCIAN
MURCIAN
MURCIAN
LERY

LERY

LERY

LERY
DE-LA-RUE
DE-LA-RUE
MARTIN
MARTIN
MARTIN
MARTIN
JACQUENOD
JACQUENOD
JACQUENOD
JACQUENOD
JACQUENOD
JACQUENOD
JACQUENOD
JACQUENOD
JACQUENOD
DUMOULIN
DUMOULIN
LABONNE-JAYAT
LABONNE-JAYAT
DE-LA-FONTAINE
LEVY

LEVY

JEAN
JEAN-CHRISTOPHE
JEAN-CHRISTOPHE
JEAN-CHRISTOPHE
CAROLE

CAROLE

CAROLE

CAROLE

CAROLE
JEAN-MICHEL
JEAN-MICHEL
JEAN-MICHEL
JEAN-MICHEL
JEAN-CHRISTOPHE
JEAN-CHRISTOPHE
PAUL-DAVID
PAUL-DAVID
PIERRE

PIERRE

FREDERIC
FREDERIC
FREDERIC
LAURENCE
LAURENCE
LAURENCE
LAURENCE
LAURENCE
LAURENCE
JEAN-CHRISTOPHE
JEAN-CHRISTOPHE
OLIVIER
OLIVIER

JEAN

SAMUEL

SAMUEL

Compte de dépd
Carte débit di
Livret A
Compte de dépd
Carte débit di
Compte sur Liv
Compte de dépd
Carte débit di
Livret A
Compte sur Liv
Livret Jeune
Compte de dépd
Compte sur Liv
Livret Jeune
Livret Dév.Dur
Compte de dépd
Carte débit di
Compte de dépd
Carte débit di
Compte de dépd
Carte débit di
Compte de dépd
Carte débit di
Livret A
Compte de dépd
Carte débit di
Livret A
Compte sur Liv
Livret Jeune
Livret Dév.Dur
Compte de dépd
Carte débit di
Compte de dépd
Carte débit di
Compte de dépd
Compte de dépd
Carte débit di

100

-688.98

1790.22
-555.66
394.87
-552.87
590.98
-679.08
-276.21
200
52.11
400

100
-2186.86
0
234.02
-300
1825.54
12.09
-212.98

LEVY
DE-LA-RUE
DE-LA-RUE
DE-LA-RUE
DE-LA-RUE
DE-LA-RUE
DE-LA-RUE
DUPONT
DUPONT
DUPONT
DUPONT
DUPONT
DUPONT
MARTIN
MARTIN

La figure

SAMUEL
LAURENCE
LAURENCE
LAURENCE
LAURENCE
LAURENCE
LAURENCE
JEAN
JEAN
JEAN
JEAN
JEAN
JEAN
ALBERT
ALBERT

Livret A
Compte de dépd
Carte débit di
Livret A
Compte sur Liv
Livret Jeune
Livret Dév.Dur
Compte de dépd
Carte débit di
Livret A
Compte sur Liv
Livret Jeune
Livret Dév.Dur
Compte de dépd
Carte débit di

432.76
275.7
-104.1
1032.47
31.3
818.38
82.23
4572.1
-2987.65
2500
5628.34
1600
1002.11
363.49
-150

10-1.16 présente le résultat de I’exécution du programme

MySQL PDO_query fetch jointure interne wherel web.php. Seules les
premiéres lignes de 1’affichage sont présentées.

101

Solde par compte bancaire et propriétaire
Nom Prenom libelle Solde
DUPONT JEAN Compte de dépots 750.98
DUPONT JEAN Carte a débit différé -115.8
DUPONT JEAN Livret A 765.32
JACQUENOD JEAN-CHRISTOPHE Compte de dépots -140.17
JACQUENOD JEAN-CHRISTOPHE Carte & débit différé -200
JACQUENOD JEAN-CHRISTOPHE Compte sur Livret 313
MURCIAN CAROLE Compte de dépots 2985.08
MURCIAN CAROLE Carte & débit différée -104.1
MURCIAN CAROLE Livret A 120
MURCIAN CAROLE Compte sur Livret 50
MURCIAN CAROLE Livret Jeune 298
LERY JEAN-MICHEL Compte de dépbts -688.98
LERY JEAN-MICHEL Compte sur Livret 50
LERY JEAN-MICHEL Livret Jeune 500
LERY JEAN-MICHEL Livret de Dév. Durable 120
DE-LA-RUE JEAN-CHRISTOPHE Compte de dépots 94.68
DE-LA-RUE JEAN-CHRISTOPHE Carte & débit différé -122.12
MARTIN PAUL-DAVID Compte de dépots 406.21
MARTIN PAUL-DAVID Carte a débit différe -200
MARTIN PIERRE Compte de dépots 1790.22
MARTIN PIERRE Carte a débit différée -555.66
JACQUENOD FREDERIC Compte de dépots 394.87
JACQUENOD FREDERIC Carte a débit différé -552.87
JACQUENOD FREDERIC Livret A 590.98
JACQUENOD LAURENCE Compte de dépots -679.08
JACQUENOD LAURENCE Carte a débit différé -276.21
JACQUENOD LAURENCE Livret A 200
JACQUENOD LAURENCE Compte sur Livret 52.11
JACQUENOD LAURENCE Livret Jeune 400
JACQUENOD LAURENCE Livret de Dév. Durable 100
DUMOULIN JEAN-CHRISTOPHE Compte de dépots -2186.86
DUMOULIN JEAN-CHRISTOPHE Carte & débit différée 0
LABONNE-JAYAT OLIVIER Compte de dépots 234.02
LABONNE-JAYAT OLIVIER Carte & débit différé -300

Figure 10-1.16

Affichage web query-fetch-jointure interne where-1.

Les programmes suivants présentent les versions shell et web effectuant la join-
ture interne avec la clause WHERE pour afficher le solde total de chaque client.

* MySQL PDO_query fetch jointure interne where2 shell.php
* MySQL PDO_query fetch jointure interne where2 web.php

Voici I’exécution du
MySQL PDO_query fetch jointure interne where2 shell.php.

programme

Listing 10-1.8 : Exécution de
MySQL_PDO_query_fetch_jointure_interne_where2_shell.php

$ php MySQL PDO query fetch jointure interne where2 shell.php

Solde total par propriétaire

102

ID Clt Nom Prenom Solde Total

1 DUPONT JEAN 1400.50

2 JACQUENOD JEAN-CHRISTOPHE -308.87

3 MURCIAN CAROLE 3348.98

4 LERY JEAN-MICHEL -18.98

5 DE-LA-RUE JEAN-CHRISTOPHE -27.44

6 MARTIN PAUL-DAVID 206.21

7 MARTIN PIERRE 1234.56

8 JACQUENOD FREDERIC 432.98

9 JACQUENOD LAURENCE -203.18

10 DUMOULIN JEAN-CHRISTOPHE -2186.86

11 LABONNE-JAYAT OLIVIER -65.98

12 DE-LA-FONTAINE JEAN 1825.54

13 LEVY SAMUEL 231.87

14 DE-LA-RUE LAURENCE 2135.98

15 DUPONT JEAN 12314.90

16 MARTIN ALBERT 213.49

La figure 10-1.17 présente le résultat de 1’exécution du programme

MySQL PDO query fetch jointure interne whereZ web.php.
Solde total par propriétaire
ID_CIt Nom Prenom Solde_Total

1 DUPONT JEAN 1400.50
2 JACQUENOD JEAN-CHRISTOPHE -308.87
3 MURCIAN CAROLE 3348.98
4 LERY JEAN-MICHEL -18.98
5 DE-LA-RUE JEAN-CHRISTOPHE -27.44
6 MARTIN PAUL-DAVID 206.21
7 MARTIN PIERRE 1234.56
8 JACQUENOD FREDERIC 432.98
9 JACQUENOD LAURENCE -203.18
10 DUMOULIN JEAN-CHRISTOPHE -2186.86
1" LABONNE-JAYAT OLIVIER -65.98
12 DE-LA-FONTAINE JEAN 1825.54
13 LEVY SAMUEL 231.87
14 DE-LA-RUE LAURENCE 2135.98
15 DUPONT JEAN 12314.90
16 MARTIN ALBERT 213.49

Figure 10-1.17

Affichage web query-fetch-jointure interne where-2.

La jointure des syntaxes précédentes utilisait la clause WHERE afin de faciliter la
compréhension, puisque cette clause avait déja été présentée. La jointure avec la
clause WHERE est devenue obsoléte, méme si elle fonctionne parfaitement. Il faut
maintenant utiliser la syntaxe INNER JOIN. La réécriture de la requéte SQL :

SELECT cb.ID Clt,cl.Nom,cl.Prenom,ROUND (SUM(cb.Solde),2)
Solde Total FROM comptes bancaires cb,clients bancaires cl
WHERE cb.ID Clt=cl.ID Clt GROUP BY cb.ID Clt;

Se note :

SELECT cb.ID Clt,cl.Nom,cl.Prenom,ROUND (SUM(cb.Solde),2)
Solde Total FROM comptes bancaires cb INNER JOIN
clients bancaires cl ON cb.ID Clt=cl.ID Clt GROUP BY
cb.ID Clt;

Les programmes suivants présentent les versions shell et web effectuant la join-
ture interne avec la clause INNER JOIN pour afficher le solde total de chaque
client.

* MySQL PDO _query fetch jointure interne inner join shell.php
* MySQL PDO_query fetch jointure interne inner join web.php
Ils affichent le méme résultat que les deux programmes précédents.

Les jointures externes
Cette section présente des exemples de jointure externe. Les programmes suivants
sont les versions shell et web effectuant la jointure externe avec la clause LEFT
JOIN pour afficher le solde total de chaque compte, y compris ceux qui n’ont pas
de propriétaire connu dans la table des clients.
* MySQL PDO _query fetch jointure externe left join shell.php
* MySQL PDO_query fetch jointure externe left join web.php

Voici I’exécution du programme
MySQL PDO query fetch jointure externe left join shell.php.

Le compte ayant le propriétaire le client N°26 apparait, alors qu’il est inconnu
dans la table des clients.

Listing 10-1.9 : Exécution de
MySQL_PDO_query_fetch_jointure_externe_left_join_shell.php

S php
MySQL PDO query fetch jointure externe left join shell.php

Solde total par propriétaire, pour tous les clients

ID Clt Nom Prenom Solde Total
1 DUPONT JEAN 1400.50
2 JACQUENOD JEAN-CHRISTOPHE -308.87
3 MURCIAN CAROLE 3348.98
4 LERY JEAN-MICHEL -18.98
5 DE-LA-RUE JEAN-CHRISTOPHE -27.44
6 MARTIN PAUL-DAVID 206.21
7 MARTIN PIERRE 1234.56

104

8 JACQUENOD FREDERIC 432.98

9 JACQUENOD LAURENCE -203.18
10 DUMOULIN JEAN-CHRISTOPHE -2186.86
11 LABONNE-JAYAT OLIVIER -65.98
12 DE-LA-FONTAINE JEAN 1825.54
13 LEVY SAMUEL 231.87
14 DE-LA-RUE LAURENCE 2135.98
15 DUPONT JEAN 12314.90
16 MARTIN ALBERT 213.49
26 345.29

La figure 10-1.18 présente le résultat de I’exécution du programme
MySQL PDO query fetch jointure externe left join web.php.

Solde total par propriétaire, pour tous les comptes
ID_CIt Nom Prenom ‘ Solde_Total
1 DUPONT JEAN 1400.50
2 JACQUENOD JEAN-CHRISTOPHE -308.87
3 MURCIAN CAROLE [3348.98
4 LERY JEAN-MICHEL -18.98
5 DE-LA-RUE JEAN-CHRISTOPHE [-27.44
6 MARTIN PAUL-DAVID 206.21
7 MARTIN PIERRE | 1234.56
8 JACQUENOD FREDERIC 432.98
9 JACQUENOD LAURENCE -203.18
10 DUMOULIN JEAN-CHRISTOPHE -2186.86
1 LABONNE-JAYAT OLIVIER -65.98
12 DE-LA-FONTAINE JEAN 1825.54
13 LEVY SAMUEL 231.87
14 DE-LA-RUE LAURENCE 2135.98
15 DUPONT JEAN 12314.90
16 MARTIN ALBERT 213.49
26 345.29

Figure 10-1.18

Affichage web query-fetch-jointure externe left join.

Les programmes suivants sont les versions shell et web effectuant la jointure ex-
terne avec la clause RIGHT JOIN pour afficher le solde total de chaque client, y
compris ceux qui n’ont pas aucun compte.

* MySQL PDO _query fetch jointure externe right join shell.php
* MySQL PDO_query fetch jointure externe right join web.php

Voici I’exécution du programme
MySQL PDO _query fetch jointure externe right join shell.php.

Le client N°17, JACQUES ROUSSE, apparait alors qu’il n’a aucun compte dans
la table des comptes bancaires.

MySQL_PDO_query_fetch_jointure_externe_right_join_shell.php

S php
MySQL PDO_query fetch jointure externe right join shell.php

105

Solde total par client,

pour tous les clients

ID Clt Nom Prenom Solde Total
1 DUPONT JEAN 1400.50
2 JACQUENOD JEAN-CHRISTOPHE -308.87
3 MURCIAN CAROLE 3348.98
4 LERY JEAN-MICHEL -18.98

5 DE-LA-RUE JEAN-CHRISTOPHE -27.44

6 MARTIN PAUL-DAVID 206.21

7 MARTIN PIERRE 1234.56
8 JACQUENOD FREDERIC 432.98

9 JACQUENOD LAURENCE -203.18
10 DUMOULIN JEAN-CHRISTOPHE -2186.86
11 LABONNE-JAYAT OLIVIER -65.98
12 DE-LA-FONTAINE JEAN 1825.54
13 LEVY SAMUEL 231.87
14 DE-LA-RUE LAURENCE 2135.98
15 DUPONT JEAN 12314.90
16 MARTIN ALBERT 213.49
17 ROUSSE JACQUES

La figure 10-1.19 présente le résultat de 1’exécution du programme

MySQL PDO query fetch jointure externe right join web.php.

Solde total par client, pour tous les clients
ID_CIt Nom Prenom Solde_Total

1 DUPONT JEAN 1400.50
2 JACQUENOD JEAN-CHRISTOPHE -308.87
3 MURCIAN CAROLE 3348.98
4 LERY JEAN-MICHEL -18.98
5 DE-LA-RUE JEAN-CHRISTOPHE -27.44
6 MARTIN PAUL-DAVID 206.21
7 MARTIN PIERRE 1234.56
8 JACQUENOD FREDERIC 432.98
9 JACQUENOD LAURENCE -203.18
10 DUMOULIN JEAN-CHRISTOPHE -2186.86
" LABONNE-JAYAT OLIVIER -65.98
12 DE-LA-FONTAINE JEAN 1825.54
13 LEVY SAMUEL 231.87
14 DE-LA-RUE LAURENCE 2135.98
15 DUPONT JEAN 12314.90
16 MARTIN ALBERT 213.49
17 ROUSSE JACQUES

Figure 10-1.19

Affichage web query-fetch-jointure externe right join.

Le mode transactionnel avec MySQL et PDO

106

Principe

Les transactions MySQL sécurisent I’exécution d’un groupe de requétes en re-
venant a I’état d’origine en cas de probleéme sur une des requétes du groupe. En cas
de succeés de I’ensemble des requétes, la validation de la transaction applique les
changements de maniére définitive. De plus, un mécanisme de verrouillage interdit
la modification par un processus tierce, des ¢léments en cours de traitement par la
transaction.

C’est I’exemple du traitement d’un virement bancaire, composé de deux opéra-
tions, le débit du compte initial et le crédit du compte cible, qui doit étre validé ou
annulé globalement.

L’annulation de la transaction et le retour a 1’état d’origine se nomme « rool-
back ». La validation finale correspond a I’action de « commit ».

Le mode transactionnel est supporté par le moteur InnoDB de MySQL.

Les fonctions

Les méthodes de la classe PDO qui mettent en ceuvre le mode transactionnel sont :

* beginTransaction () : cette méthode démarre une nouvelle transaction. Elle
désactive le mode « autocommit ». D¢&s la désactivation de « autocommit »,
toutes les modifications sont gardées en mémoire, rien n’est réellement appliqué
sur les tables (pas d’écriture sur disque). Elle retourne TRUE en cas de succés et
FALSE si une erreur survient.

* commit () : cette méthode termine la transaction en validant les modifications.
Les données sont écrites sur disque. Elle remet la connexion en « autocommit ».
Cette méthode retourne TRUE en cas de succés et FALSE en cas d’erreur. Une
exception PDOExeption est lancée en cas d’erreur, par exemple si aucune tran-
saction n’est active.

* rollback() : cette méthode termine la transaction en annulant les modifica-
tions. Rien n’est écrit sur disque. Elle remet la connexion en « autocommit ».
Elle retourne TRUE en cas de succes et FALSE en cas d’erreur. Une exception
PDOExeption est lancée en cas d’erreur, par exemple si aucune transaction n’est
active.

Les syntaxes

Nous présentons deux variations syntaxiques « simplifiées » de ces trois fonctions :

107

» Avec utilisation de la méthode query () pour effectuer les modifications. Cette
fonction ne sécurise pas la requéte ;

* Puis avec la méthode prepare (), qui sécurise la requéte via les requétes prépa-
rées.

Avec des requétes standards

Nous utilisons la table « comptes_bancaires » pour effectuer un virement entre
deux comptes. Dans cet exemple le compte ayant I’ID N°4 est débité de 100 €, et le
compte ayant I’ID N°7 est crédité de 100 €.

SMtvVirt=100 ;

$NumCptDebit=4 ;

SNumCptCredit=7 ;

try { // -- Connexion de la base de données --
$bdd = new

PDO($TYPE_DBB.":hOSt=".$SERVEUR.";dbname=".$BASEDD,$LOGIN_ADM,
$MDP_ADM, array (PDO: :ATTR PERSISTENT => true));
// -- Initialisation des Exceptions PDO pour prepare --
$bdd—>setAttribute(PDO::ATTR_ERRMODE,

PDO: :ERRMODE EXCEPTION) ;

// -- Définition du codage en UTF8 --
Sbdd->exec ("SET CHARACTER SET utf8");
// -- On débute la transaction --

$bdd->beginTransaction() ;

//-- On débite le compte --

$requete debit='UPDATE comptes_bancaires SET Solde=Solde-
'.$MtVirt.' WHERE Id _Cpt='.$NumCptDebit;

Sreponse = $bdd->query($requete_debit);

// -- Fermeture de la requéte --
$reponse->closeCursor() ;

//-- On crédite le compte --

$requete_credit='UPDATE comptes_bancaires SET
Solde=Solde+'.$MtVirt.' WHERE Id Cpt='.$NumCptCredit;
Sreponse = $bdd->query($requete_credit);

// -- Fermeture de la requéte --
Sreponse->closeCursor () ;
// -- Si aucune erreur, on valide la transaction --

Sreponse = $bdd->commit () ;
}
catch (Exception $e) {

// -- On annule la transaction --
Sbdd->rollback() ;

// -- On affiche un message d'erreur --

echo 'Probléme sur le virement - Transaction

annulée'.PHP EOL;
echo S$e->getMessage () .PHP EOL;
}

108

Avec des requétes préparées

Voici le méme virement avec les requétes préparées :

SMtVirt = 100 ;

SNumCptDebit = 4 ;

SNumCptCredit = 7

try { // -- Connexion de la base de données --
$bdd = new

PDO($TYPE_DBB.":hOSt=".$SERVEUR.";dbname=".$BASEDD,$LOGIN_ADM,
$MDP_ADM, array (PDO: :ATTR PERSISTENT => true));
// -- Initialisation des Exceptions PDO pour prepare --
$bdd—>setAttribute(PDO::ATTR_ERRMODE,
PDO: :ERRMODE EXCEPTION) ;

// -- Définition du codage en UTF8 --

Sbdd->exec ("SET CHARACTER SET utf8");

// -- On gére le virement dans une transaction SQL --
// -- On débute la transaction --

$bdd->beginTransaction() ;

// -- On débite le compte --

// -- Préparation de la requéte --

$requete sql='UPDATE comptes_bancaires SET
Solde=Solde+:MontantVir WHERE Id Cpt=:NumCptOperation';
Sreponse = S$bdd->prepare($requete_sql);

// -- Liaison avec les parametres --
$reponse->bindParam(':MontantVir', $MontantVir);
Sreponse->bindParam(' :NumCptOperation', $NumCptOperation,
PDO::PARAM_INT);

// -- Affectation des valeurs pour les paramétres --
$MontantVir = -$MtVirt ;

$NumCptOperation = $NumCptDebit ;

// -- Exécution de la requéte --

Sreponse->execute () ;

// -- Fermeture de la requéte --
Sreponse->closeCursor () ;

// -- On crédite le compte --

// -- La requéte est déja préparée, elle ne change pas --
// -- Paramétres déja 1liés (bind) pas de changement --

// -- Affectation des valeurs pour les paramétres --
$MontantVir = +$MtVirt ;

$NumCptOperation = $NumCptCredit ;

// -- Exécution de la requéte --

Sreponse->execute () ;

// -- Fermeture de la requéte --

$reponse->closeCursor() ;

// -- Si aucune erreur, on valide la transaction --

Sreponse = $bdd->commit () ;
}
catch (Exception $e) {
// -- On annule la transaction --

109

$bdd->rollback () ;

// -- On affiche un message d'erreur --

echo 'Probleme sur le virement - Transaction
annulée'.PHP EOL;

echo S$e->getMessage () .PHP EOL;

}

Exemples

En shell

Le programme MySQL PDO_transaction secure prepare shell.php met en

ceuvre un virement entre deux comptes bancaires. Il utilise les tables

comptes bancaires et clients bancaires avec une jointure interne pour pré-

senter la liste des comptes avec le nom et le prénom de leur propriétaire. Il effectue

un virement entre deux comptes sélectionnés dans la liste des comptes de dépots.
Ce programme utilise les fonctions suivantes :

* Affiche Etat Comptes() : cette procédure affiche la liste de tous les
comptes de dépots de la table comptes bancaires. Elle effectue la jointure in-
terne entre les tables comptes bancaires et clients bancaires pour affi-
cher les noms et les prénoms des propriétaires des comptes. Elle appelle Affi-
chage Liste Comptes () pour la présentation ;

* Saisie Numero Compte Valide () : cette fonction boucle sur la saisie d’un
numéro de compte valide. Elle est utilisée pour saisir les numéros des deux
comptes : le compte a débiter et le compte a créditer ;

e Virement () : cette fonction effectue le virement et utilise le mode transaction-
nel de MySQL.

* Info Compte () : cette fonction récupére les informations d’un seul compte
bancaire dans la table comptes bancaires

* Affichage Liste Comptes() : cette procédure « outil » affiche 1’état des
comptes du tableau passé en argument. Elle est appelée par Af-
fiche Etat Comptes (), mais également deux fois, avant le virement pour
présenter les deux comptes sur lesquels le virement est effectué, et apres celui-ci
pour confirmer le traitement.

Listing 10-1.10 : Programme MySQL_PDO_transaction_secure_prepare_shell.php

<?php
include '../../INCLUDE/MySQL include param dbb.php';
$ERR_TRAIT=falSe;
// -- On affiche 1'état des comptes AVANT la transaction --

$Tab Tous les Comptes=Affiche Etat Comptes("Etat des comptes
AVANT le virement");
// == On récupére la colonne des ID Cpt --

110

if (!$ERR_TRAIT)
{

$Tab Colonne IDCpt=array column($Tab Tous les Comptes, 'ID Cpt'
)i
// -- Initialisation des infos sur les comptes --
$Infos Cpt Debit =array();
$Infos Cpt Credit=array();

// -- Saisie du numéro de compte a débiter --

SNum Cpt Debit=Saisie Numero Compte Valide('Debit');
// -- Saisie du numéro de compte a créditer --

SNum Cpt Credit=Saisie Numero_ Compte Valide('Credit');
// -- Saisie du montant du virement --

echo "Montant du débit A
fscanf (STDIN, "%s", SMontant Virement saisi) ;

// -- Post traitement du montant du virement --
$Montant Virement saisi=str replace(",",".",S$Montant Virement
saisi);

SMontant Virement=floatval (SMontant Virement saisi);

$Montant Virement formate=number format ($Montant Virement,2,",
,mt e

// -- Affichage avant confirmation --

$Tab deux comptes[0]=$Infos Cpt Debit;

$Tab deux comptes[l]=$Infos Cpt Credit;

Affichage Liste_Comptes ("Résumé : Virement de
$Montant Virement formate, du compte $Num Cpt Debit -> le
compte $Num Cpt Credit",$Tab_deux comptes);

// -- Demande de confirmation --

echo "Confirmez le virement (o/n) : ";

fscanf (STDIN, "%s", $ConfirmationVirement) ;

if ($ConfirmationVirement == "o")

{

// == On gére le virement dans une transaction SQL ==

S$virementOK=Virement ($Num Cpt Debit,$Num Cpt_Credit, $Montant V
irement);

/) mmm e

if ($virementOK)

{

// -- On affiche le résultat du virement --

$Tab deux comptes[0]=Info_Compte ($Num Cpt Debit);

$Tab deux comptes[l]=Info_Compte ($Num Cpt Credit);

if (!SERR_TRAIT)

Affichage_Liste_Comptes("Résultat : Virement de

$Montant Virement formate, du compte $Num Cpt Debit -> le
compte $Num Cpt Credit",$Tab_deux comptes);

111

}
}
}

// khkkkkkkhkkkkkkk Sous_programmes khkhkhkkhkk kA kkkhkkhkkkkk kK

// ===m==mm=mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm—mmeoee

function Affiche Etat_Comptes ($texte)

{

global
$ERR_TRAIT,$TYPE_DBB,$SERVEUR,$BASEDD,$TABLEPERSONNES,$LOGIN_A
DM,$MDP_ADM;

try {
// -- Contexte pour le message d'erreur --
Scontexte="Connexion base de données";
// -- Connexion de la base de données --
Sbdd = new

PDO($TYPE_DBB.":hOSt=".$SERVEUR.";dbname=".$BASEDD,$LOGIN_ADM,
SMDP_ADM,
array (PDO: :ATTR PERSISTENT => true));

// -- Définition du codage en UTF8 --
Sbdd->exec ("SET CHARACTER SET utf8");
// -- Initialisation des Exceptions PDO pour prepare --

$bdd->setAttribute (PDO: :ATTR_ERRMODE,
PDO: :ERRMODE EXCEPTION) ;

// -- Limitation aux comptes de dépbt --

Stype compte="Compte Dépdts";

// -- On affiche les comptes courant Avant le virement --
// -- Contexte pour le message d'erreur --
Scontexte="Probléme de requéte";

// -- Préparation de la requéte --

Srequete sgl='SELECT
cb.ID Cpt,cb.Agence,cb.Numero,cb.Type,cl.Nom,cl.Prenom,ROUND (c
b.Solde,2) Solde Compte FROM comptes bancaires cb INNER JOIN
clients bancaires cl ON cb.ID Clt=cl.ID Clt WHERE
Type=:type compte';

SRequetePreparee = Sbdd->prepare (Srequete sql);

// -- Liaison avec les parametres --
SRequetePreparee->bindParam(':type compte', Stype compte);
// -- Exécution de la requéte --
SRequetePreparee->execute () ;

// -- Retourne un tableau associatif --
SRequetePreparee->setFetchMode (PDO: : FETCH ASSOC) ;

// -- Boucle de traitement de chaque client --

$Tab Comptes=SRequetePreparee->fetchAll();

// -- Conversion de la colonne solde au format francais --

foreach ($Tab Comptes as $Num => Sun cpt)
{

112

$un_cpt['Solde Compte']=number format (Sun cpt['Solde Compte'],
2,","," ll).H €ll,.
$Tab Comptes[$SNum]=Sun cpt;
}

// -- Affichage des données retournées --
Affichage Liste Comptes(Stexte,$Tab Comptes);
// -- Fermeture de la requéte --

SRequetePreparee->closeCursor () ;

return $Tab Comptes;

}
catch (Exception S$e)

{

echo Scontexte.' : '.Se->getMessage().PHP EOL;
$ERR_TRAI T=true;

/| ======s=s==s=s==================================

function Saisie Numero_Compte Valide ($type_saisie)

{

global
$Infos Cpt Debit,$Infos Cpt Credit, $Tab Colonne IDCpt,$Tab Tou
s _les Comptes;

$Infos Cpt xxx=array();

if (Stype saisie == "Debit") S$Texte Action="a débiter ";
else $Texte Action="a créditer";
// -- Boucle de saisie --

while (count($Infos Cpt xxx) == 0)
{

echo "Numéro du compte ".$Texte Action." : ";
fscanf (STDIN, "%d", SNum_Cpt) ;
// -- On récupére 1'indice numérique de la case --
Snumcase=array search ($Num Cpt, $Tab Colonne IDCpt);
// -- array search() retourne le numéro de la case --
// -- du tableau ou bien false en cas d'échec --
// -- attention il faut utiliser le triple = afin de --
// -- résoudre le probléme de la donnée trouvée dans --
// -- la case 0 valeur qui peut étre interprétée comme --
// -- false si le test est noté : if (!Snumcase) --
if ($numcase == false)

echo "Compte $Num Cpt inexistant !".PHP EOL;
else

{
$Infos Cpt xxx=$Tab Tous les Comptes[$numcase];
if (Stype saisie == "Debit")
$Infos Cpt Debit=$Infos Cpt xxx;

113

else
$Infos Cpt Credit=$Infos Cpt xxx;

}
return $Num Cpt;

function Virement ($NumCptDebit, $NumCptCredit, $MtVirt)
{
global
$TYPE_DBB,$SERVEUR,$BASEDD,$TABLEPERSONNES,$LOGIN_ADM,$MDP_ADM
Svirement effectue=true;
$ConnexionBDD=false;
STransactionDemarree=false;

try
{
// -- Contexte pour le message d'erreur --
Scontexte="Connexion base de données";
// -- Connexion de la base de données --
$bdd = new

PDO($TYPE_DBB.":host=".$SERVEUR.";dbname=".$BASEDD,$LOGIN_ADM,
$MDP_ADM,
array (PDO: :ATTR_PERSISTENT => true));
$ConnexionBDD=true;
// -- Initialisation des Exceptions PDO pour prepare --
$bdd->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

// -- Définition du codage en UTF8 --

$bdd->exec ("SET CHARACTER SET utf8");

// -- On gére le virement dans une transaction SQL --
// ==============================

// == On débute la transaction ==

// ==============================

// -- Contexte pour le message d'erreur --

Scontexte="Initialisation virement";
$bdd->beginTransaction() ;
$TransactionDemarree=true;

[/ ====s=ss====ss=============

// == On débite le compte ==

[/ s====s====ss=============

// -- Contexte pour le message d'erreur --
Scontexte="Débit du compte" ;

// -- Préparation de la requéte --

Srequete sql='UPDATE comptes_bancaires SET
Solde=Solde+:MontantVir WHERE Id Cpt=:NumCptOperation';

114

$reponse = $bdd->prepare($requete_sql);

// -- Liaison avec les parametres --

Sreponse->bindParam(':MontantVir', $MontantVir);

Sreponse->bindParam (' :NumCptOperation', $NumCptOperation,
PDO: : PARAM INT);

// -- Affectation des valeurs pour les paramétres --

SMontantVir = -SMtVirt ;

$NumCptOperation = $NumCptDebit ;

// -- Exécution de la requéte --

Sreponse->execute () ;

// -- Fermeture de la requéte --

Sreponse->closeCursor();

// ==========================

// == On crédite le compte ==

// ==========================

// -- Contexte pour le message d'erreur --

Scontexte="Crédit du compte";

// -- La requéte est déja préparée, elle ne change pas --

// -- les paramétres sont déja liés (bind) ils ne changent
pas --

// -- Affectation des valeurs pour les paramétres --

S$MontantVir = +$MtVirt ;

SNumCptOperation = $NumCptCredit ;

// -- Exécution de la requéte --

Sreponse->execute () ;

// -- Fermeture de la requéte --

Sreponse->closeCursor();

// ==============================

// == On valide la transaction ==

// ==============================

// -- Si aucune erreur, on valide la transaction --

Scontexte="Validation virement";
Sreponse = $bdd->commit () ;
// -- On confirme le virement --
echo 'Virement effectué !'.PHP EOL;
}
catch (Exception S$e)
{
/| ==============================

// == On annule la transaction ==

Sbdd->rollback() ;
}

catch (Exception Ser)

115

{
// -- On affiche un message d'erreur --
echo 'Probleme sur le virement - Transaction

annulée'.PHP EOL;

echo 'Annulation : '.Ser->getMessage().PHP EOL;
$virement effectue=false;

}

}

// -- On affiche un message d'erreur --

echo 'Probleme sur le virement - Transaction
annulée'.PHP EOL;

echo Scontexte.' : '.Se->getMessage().PHP EOL;

S$virement effectue=false;

}

return Svirement effectue;
// =================ccc=ssmssssssessseses s ssss s s

// ===s====ss======s===ss====ss====s=ss==ssss===sss=s=s=ss==s=s===
function Info_Compte ($compte)

{

global
$ERR_TRAIT,$TYPE_DBB,$SERVEUR,$BASEDD,$TABLEPERSONNES,$LOGIN_A

DM, SMDP_ADM;

try
{
// -- Contexte pour le message d'erreur --
Scontexte="Connexion base de données";
// -- Connexion de la base de données --
$bdd = new
PDO($TYPE_DBB.":hOSt=".$SERVEUR.";dbname=".$BASEDD,$LOGIN_ADM,
$SMDP_ADM,
array (PDO: :ATTR PERSISTENT => true));
// -- Définition du codage en UTF8 --
Sbdd->exec ("SET CHARACTER SET utf8");
// -- Initialisation des Exceptions PDO pour prepare --

$bdd—>setAttribute(PDO::ATTR_ERRMODE,
PDO: :ERRMODE EXCEPTION) ;

Scontexte="Probléme de requéte sur la table";

// -- Préparation de la requéte --

Srequete sgl='SELECT
cb.ID Cpt,cb.Agence,cb.Numero,cb.Type,cl.Nom,cl.Prenom,ROUND (c
b.Solde,2) Solde Compte FROM comptes bancaires cb INNER JOIN
clients bancaires cl ON cb.ID Clt=cl.ID Clt WHERE
ID Cpt=:compte';

SRequetePreparee = Sbdd->prepare (Srequete sql);

// -- Liaison avec les parametres --

116

SRequetePreparee->bindParam(':compte', S$Scompte,
PDO::PARAM INT);

// -- Exécution de la requéte --
SRequetePreparee->execute () ;

// -- Retourne un tableau associatif --
SRequetePreparee->setFetchMode (PDO: : FETCH ASSOC) ;

// -- Boucle de traitement de chaque client --

$Tab Infos Cpt=$RequetePreparee->fetchAll();

// -- Conversion de la colonne solde au format francais --

foreach ($Tab Infos Cpt as $Num => Sun cpt)
{

$un_cpt['Solde Compte']=number format (Sun cpt['Solde Compte'],
2,","," ll)." €ll,.
$Tab Infos Cpt[$Num]=Sun cpt;
}
$Tab Infos Un Cpt=STab Infos Cpt[0];
return $Tab Infos Un Cpt;
}
catch (Exception S$e)
{
echo Scontexte.' : '.Se->getMessage().PHP EOL;
SERR_TRAIT=true;

/] ===s==================================
function Affichage Liste Comptes($texte,$tab_mixte)
{
if (count($tab mixte)==0)
echo 'Aucun élément a afficher.';
else
{
// -- Affichage entéte du tableau --
reset (Stab _mixte);
Sun_compte=current (Stab mixte);
$liste champs=array keys($un compte);

echo "---- -
—————————————————————————————————— ".PHP EOL;

echo " $texte".PHP EOL;

echo "---- -
—————————————————————————————————— ".PHP EOL;

foreach(Sliste champs as $nom champ)

{

if ($nom champ == "ID Cpt")
fprintf (STDOUT, "%6s|", Snom_champ) ;
else if ($nom champ == "Agence")

117

fprintf (STDOUT," %-6s|", Snom_champ) ;

(

else if ($nom champ == "Numero")

fprintf (STDOUT," %-8s|", Snom_champ) ;
else if ($nom _champ == "Type")

fprintf (STDOUT," %-12s|", Snom_champ) ;
else if ($nom champ == "Nom")

fprintf (STDOUT," %-15s|", Snom_ champ) ;
else if ($nom champ == "Prenom")

fprintf (STDOUT," %-16s|",Snom champ) ;
else if ($nom champ == "Solde Compte")

fprintf (STDOUT, "%-11s|", Snom_champ) ;
else

echo "$nom champ\t";
}
echo PHP EOL;

echo "-------"-""-""""-""-"-""-""""—"—~"—" -~~~
—————————————————————————————————— ".PHP FOL;

// -- boucle de traitement de chaque compte --

foreach ($tab mixte as Sun_ compte)

{

// -- On affiche le contenu des champs --

foreach(Sliste champs as $nom champ)

{

if ($nom champ == "ID Cpt")

fprintf (STDOUT, "%5s|", Sun_compte[$nom champ]) ;
else if ($nom champ == "Agence")

fprintf (STDOUT," %-6s|",Sun_compte[Snom champ]);
else if ($nom_champ == "Numero")

fprintf (STDOUT," %-8s|",Sun_ compte[Snom champ]);
else if ($nom _champ == "Type")

fprintf (STDOUT, "%-13s|", Sun_compte[Snom champ]);
else if ($nom champ == "Nom")

fprintf (STDOUT," %-15s|",Sun_compte[S$nom champ]);
else if ($nom champ == "Prenom")

fprintf (STDOUT," %-16s|",Sun_compte[S$Snom champ]);
else if ($nom champ == "Solde Compte")

fprintf (STDOUT, "%13s|", Sun_compte[Snom champ]);
else

echo Sun compte[Snom champ]."\t";
}
echo PHP EOL;

118

Voici un exemple d’exécution. Les saisies et les comptes sur lesquels porte le vi-
rement sont en gras :

Listing 10-1.11 : Exécution de MySQL_PDO_transaction_secure_prepare_shell.php
$ php MySQL PDO transaction secure prepare shell.php

ID Cpt|Agence|Numero|Type | Nom |Prenom| Solde Compte|
1100602|165143P|Compte Dépdts|DUPONT | JEAN | 750, 98¢
4|100523]025123R|Compte_Dépdts|JACQUENOD | JEAN-CH| -140,17€]|
7100602]154123P|Compte_Dépdts |MURCIAN |CAROLE | 2 985,08€]

12100521|032154P|Compte Dépdts|LERY | JEAN-MT | -688, 98¢
16100523]123456J|Compte Dépdts|DE-LA-RUE | JEAN-CH| 94, 68€]
l8|00523\615243H\Compte_DépétsIMARTIN | PAUL-DA | 406,21¢€|
20|00521\O62332P\Compte_DépétsIMARTIN |[PIERRE | 1 790,22€]
221005211889261D|Compte Dépdts|JACQUENOD | FREDERT | 394,87¢€]
251005211545823%Z|Compte Dépdts|JACQUENOD | LAURENC | -679,08¢€]

31100523[823452N|Compte Dépdts|DUMOULIN |JEAN-CH|-2 186, 86€]|
331005231238245E|Compte Dépdts|LABONNE-J|OLIVIER]| 234,02¢€|

351006021458263T|Compte Dépdts|DE-LA-FON|JEAN | 1 825,54€]
361005231904161A|Compte Dépdts|LEVY | SAMUEL | 12,09¢]
39|00521\045123P\Compte_DépétsIDE—LA—RUEILAUREN | 275, 70€|
45]1005231987123P|Compte Dépdts|DUPONT | JEAN | 4 572,10€]
51100602]004452N|Compte Dépdts|MARTIN |ALBERT | 363,49€]

Numéro du compte a débiter : 7

Numéro du compte a créditer : 4

Montant du débit : 185,08

ID Cpt|Agence|Numero|Type | Nom |Prenom| Solde Compte|
7100602|154123P|Compte Dépdts|MURCIAN |CAROLE | 2 985,08¢€]|
4100523|025123R|Compte Dépdts|JACQUENOD|JEAN-CH| -140,17€|

Confirmez le virement (o/n) : o

Virement effectué !

ID Cpt|Agence|Numero|Type | Nom |Prenom| Solde Compte|

7100602|154123P|Compte Dépdts|MURCIAN |CAROLE | 2 800,00€]|
4100523]025123R|Compte Dépdts|JACQUENOD | JEAN-CH| 44,91¢€|

119

Pour le web

Le programme MySQL PDO transaction nosecure query shell.php est la
version non sécurisée, utilisant la méthode query () a la place de la méthode pre-
pare (). Le programme MySQL PDO transaction secure prepare web.php
est la version web du programme
MySQL PDO_transaction secure prepare shell.php. Voici un exemple
d’exécution :

La figure 10-1.20 présente le premier écran qui affiche la liste des comptes, et un
formulaire de saisie du numéro du compte a débiter, du numéro du compte a crédi-
ter et du montant du virement.

Etat des comptes AVANT le virement

ID_Cpt Agence Numero Type Nom Prenom Solde_Compte
1 00602 165143P Compte_Dépéts DUPONT JEAN 750,98 €
4 00523 025123R Compte_Dépdts JACQUENOD JEAN-CHRISTOPHE 26149 €
7 00602 154123P Compte_Dépéts MURCIAN CAROLE 258342€
12 00521 032154P Compte_Dépéts LERY JEAN-MICHEL -688,98 €
16 00523 1234560 Compte_Dépéts DE-LA-RUE JEAN-CHRISTOPHE 94,68 €
18 00523 615243H Compte_Dépéts MARTIN PAUL-DAVID 406,21 €
20 00521 062332P Compte_Dépéts MARTIN PIERRE 1790,22€
22 00521 889261D Compte_Dépéts JACQUENOD FREDERIC 394,87 €
25 00521 5458232 Compte_Dépbts JACQUENOD LAURENCE -579,00 €
31 00523 823452N Compte_Dépéts DUMOULIN JEAN-CHRISTOPHE -2 186,86 €
33 00523 238245E Compte_Dépéts LABONNE-JAYAT OLIVIER 134,00 €
35 00602 458263T Compte_Dépéts DE-LA-FONTAINE JEAN 182554 €
36 00523 904161A Compte_Dépéts LEVY SAMUEL 12,09 €
39 00521 045123P Compte_Dépéts DE-LA-RUE LAURENCE 27570 €
45 00523 987123P Compte_Dépéts DUPONT JEAN 403553 €
51 00602 004452N Compte_Dépéts MARTIN ALBERT 900,00 €
—Saisissez les informations du virement :
Numéro (ID_Cpt) du compte a créditer : 45
Numéro (ID_Cpt) du compte a débiter : 51
Montant du virement : 3553 €
Effectuer le virement Effacer le formulaire |

Figure 10-1.20

Virement : écran de saisie.

La figure 10-1.21 présente 1’écran suivant qui affiche 1’état des comptes avant le
virement, et demande une confirmation :

120

Résumé : Virement de 35,53 €, du compte 45 -> le compte 51

ID_Cpt Agence Numero Type Nom Prenom | Solde_Compte
45 00523 987123P Compte_Dépbts DUPONT JEAN 403553 €
51 00602 004452N Compte_Dépots MARTIN ALBERT 900,00 €

r— Confirmation du virement

Merci de confirmer le virement :
Oui © Non

Confirmer

Figure 10-1.21

Virement : état des comptes sélectionnés avant virement

La figure 10-1.22 présente I’écran qui confirme la validation du virement et af-
fiche I’état des comptes apres le traitement.

Résultat : Virement de 35,53 €, du compte 45 -> le compte 51

ID_Cpt Agence Numero Type Nom Prenom | Solde_Compte
45 00523 987123P Compte_Dépbts DUPONT JEAN 4.000,00 €
51 00602 004452N Compte_Dépbts MARTIN ALBERT 935,53 €

Figure 10-1.22

Virement : état des comptes sélectionnés aprés virement

Voici le programme MySQL PDO transaction secure prepare web.php:

Listing 10-1.12 : Programme MySQL_PDO_transaction_secure_prepare_web.php
<?php
// On démarre la session AVANT d'écrire du code HTML
// pour les variables de session
session_start();
include
"INCLUDE/MySQL PDO transaction include sprog commun web.php';
include 'INCLUDE/MySQL PDO_ transaction include param dbb.php';
?>
<!DOCTYPE html>
<html>
<head> <!-- Entéte HTML -->
<meta charset="utf-8" />
<title>Virement bancaire</title>
<link href="CSS/MySQL PDO_transaction.css"
rel="stylesheet" type="text/css" />
</head>
<body>
<?php
SERR_TRAIT=false;
[/ mmmmmm e

// -- Début du traitement --
[/ —mmmmm e

// Page appelée de plusieurs maniéres différentes

S

if (!empty($ POST['confirmation virement']))

{

if (isset($ POST['RepVir'])) SConfirmationVirement =
$ POST['RepVir'] ;
else S$ConfirmationVirement = 'non' ;
if (SConfirmationVirement == "oui")
{
$Num_Cpt Debit = $ SESSION['Num Cpt Debit'] ;

S$Num_Cpt Credit

$Montant Virement formate
$ SESSION['Montant Virement formate'] ;

S$Montant Virement = $ SESSION['Montant Virement'];

$ SESSION['Num Cpt Credit'] ;

// == On gére le virement dans une transaction SQL ==

$virementOK=Virement ($Num Cpt Debit,$Num Cpt Credit, $Montant V
irement);

[/ mm e oo

if ($SvirementOK)

{

// -- On affiche le résultat du virement --

$Tab deux comptes[0]=Info_Compte ($Num Cpt Debit) ;

$Tab deux comptes[l]=Info_Compte ($Num Cpt Credit);

if (!$ERR_TRAIT)

Affichage Liste_ Comptes ("Résultat : Virement de
$Montant Virement formate, du compte $Num Cpt Debit -> le
compte $Num Cpt Credit",$Tab_deux comptes);

}
}
else
{
$TitreMessage="Aucun virement" ;
$TexteMessage="Aucun virement n'a été
effectué !'";
Affiche Message Erreur ($TitreMessage, $TexteMessage);
}
}
elseif (!empty($ POST['info virement']))
{
// -- On récupére la variable de session le tableau des
comptes --
$Tab Tous les Comptes=$ SESSION['Tab Tous les Comptes'] ;

122

$Tab Colonne IDCpt=array column($Tab Tous les Comptes, 'ID Cpt'
):
// -- Initialisation des infos sur les comptes --
$Infos Cpt Debit =array();

$Infos Cpt Credit=array();

// -- On récupére les valeurs saisies --

if (isset($ POST['Num Cpt Debit'])) S$Num Cpt Debit =
$ POST['Num Cpt Debit']

else $Num Cpt Debit = '’ ;

if (isset($ POST['Num Cpt Credit'])) $Num Cpt Credit =
$ POST['Num Cpt Credit'] ;

else $Num Cpt Credit = '' ;

if (isset($ POST['MtVir'])) SMtVir = $ POST['MtVir'] ;
else $MtVir = "! ;
// -- Protection contre 1'injection HTML --
SNum_Cpt Debit = strip tags($Num Cpt Debit) ;
SNum_Cpt Credit = strip tags($Num Cpt Credit);
SMtVir = strip tags($MtVir) ;
// -- Normalisation au format entier ou réel --
S$Num Cpt Debit = intval ($Num Cpt Debit) ;
SNum Cpt Credit = intval (SNum Cpt Credit) ;
SMtVir = floatval (str_ replace(",",".",SMtVir));
if (($Num_Cpt Debit!=0) || ($Num Cpt Credit!=0) || ($MtVir!=0))
{
$Montant Virement formate=number format ($MtVir,2,","," ")."
€";
// -- On récupére 1'indice numérique de la case --
$numcaseDebit =
array search($Num Cpt Debit, $Tab Colonne IDCpt) ;
$numcaseCredit =

array search($Num Cpt Credit,$Tab Colonne IDCpt);
// array search() retourne le numéro de la case du tableau
// ou bien false en cas d'échec
// attention il faut utiliser le triple = afin de résoudre
// le probléme de la donnée trouvée dans la case 0
// valeur qui peut étre interprétée comme false si le test
// est noté : if (!S$numcaseDebit)

if ($numcaseDebit == false)

{

$TitreMessage = "Numéro de compte invalide" ;
STexteMessage = "Compte à débiter

numéro $Num Cpt Debit inexistant !";
Affiche Message Erreur ($TitreMessage, $TexteMessage);
SERR_TRAIT = true;
}
elseif ($numcaseCredit == false)

{

123

$TitreMessage "Numééro de compte invalide" ;

STexteMessage = "Compte à crééditer
numéro $Num Cpt Credit inexistant !";

Affiche Message Erreur ($TitreMessage, $TexteMessage);

$ERR_TRAIT = true;
}
else
{
// -- On affiche le résultat du virement --
$Tab deux comptes[0] = Info_Compte ($Num Cpt Debit) ;

$Tab deux comptes[1]
if (!SERR_TRAIT)
Affichage Liste Comptes("Résuméeacute;
Virement de $Montant Virement formate, du compte
$Num_Cpt Debit -> le compte
$Num Cpt Credit",$Tab deux comptes);
$ SESSION['Num Cpt Debit'] = $Num Cpt Debit ;
$ SESSION['Num Cpt Credit'] SNum_Cpt Credit ;
$ SESSION['Montant Virement formate'] =
$Montant Virement formate ;
$ SESSION['Montant Virement'] = SMtVir ;
?>

<form
action="MySQL PDO transaction secure prepare web.php"
method="post">
<fieldset>
<legend>Confirmation du virement</legend>

Merci de confirmer le virement :

Oui <input type="radio" name="RepVir" value="oui">
Non <input type="radio" name="RepVir" value="non"
checked="checked">

<input type="submit" name="confirmation virement"
value="Confirmer" />
</fieldset>
</form>
<?php
}
}
}
else
{
// -- On affiche 1'état des comptes AVANT la transaction --
$Tab Tous les Comptes=Affiche Etat Comptes("Etat des comptes
AVANT le virement");
// -- On récupére la colonne des ID Cpt --
if (!$ERR_TRAIT)
{

Info_Compte ($Num_Cpt Credit);

124

// Conserve en variable de session le tableau des comptes
$ SESSION['Tab Tous les Comptes']=S$Tab Tous les Comptes ;
// Affichage du formulaire de saisie
2>

<form action="MySQL PDO_ transaction secure prepare web.php"
method="post">
<fieldset>
<legend>Saisissez les informations du virement
:</legend>

Numééro (ID Cpt) du compte à
crééditer : <input type="text"
name="Num Cpt Debit" size="3" maxlength="3" required
pattern="[1-9]1[0-9]1{0,2}" placeholder="7"
autofocus/>

Numééro (ID Cpt) du compte à
débiter : <input type="text"
name="Num Cpt Credit" size="3" maxlength="3" required
pattern="[1-9][0-9]1{0,2}" placeholder="12" />

Montant du virement : <input type="text"
name="MtVir" size="8" maxlength="8" placeholder="185,33"
required pattern="[1-9][0-9\.\,1{0,7}" /> €

<input type="submit" name="info virement" value="Effectuer
le virement" />
<input type="reset" value="Effacer le formulaire" />
</fieldset>
</form>
<?php
}
}
2>
</body>
</html>

Voici le fichier MySQL PDO_transaction include sprog commun_web.php,
contenant les différentes fonctions utilisées dans le programme.

Listing 10-1.13 : fichier MySQL_PDO_transaction_include_sprog_commun_web.php

<?php

define ("WEB_EOL", "
");

/| ==

// -- Fonction d'affichage de 1'état de tous les comptes --

/| ===

function Affiche Etat_ Comptes ($texte)
{

125

global
$ERR_TRAIT,$TYPE_DBB,$SERVEUR,$BASEDD,$LOGIN_ADM,$MDP_ADM,$TAB
LECOMPTES, STABLECLIENTS;

try {
// -- Contexte pour le message d'erreur --
Scontexte="Connexion base de données";
// —-- Connexion de la base de donnéées --
Sbdd = new

PDO($TYPE DBB.":host=".S$SERVEUR.";dbname=".SBASEDD, $LOGIN ADM,
SMDP ADM, array(PDO::ATTR PERSISTENT => true));

// -- Définition du codage en UTF8 --
Sbdd->exec ("SET CHARACTER SET utf8");
// -- Initialisation des Exceptions PDO pour prepare --

ded—>setAttribute(PDO::ATTR_ERRMODE,
PDO: :ERRMODE EXCEPTION) ;
// Limitation aux comptes de dépdt
Stype compte="Compte Dépdts";
// On affiche tous les comptes courant Avant le virement

// -- Contexte pour le message d'erreur --
Scontexte="Problème de requéête";
// -- Préparation de la requéte --

Srequete sgl='SELECT
cb.ID Cpt,cb.Agence,cb.Numero,cb.Type,cl.Nom,cl.Prenom,ROUND (c
b.Solde,2) Solde Compte FROM '.STABLECOMPTES.' cb INNER JOIN
' .STABLECLIENTS.' cl ON cb.ID Clt=cl.ID Clt WHERE
Type=:type compte';
SRequetePreparee = Sbdd->prepare (Srequete sqgl);

// -- Liaison avec les paramétres --
SRequetePreparee->bindParam(':type compte', Stype compte);
// -- Exécution de la requéte --
SRequetePreparee->execute () ;

// -- Retourne un tableau associatif --
SRequetePreparee->setFetchMode (PDO: : FETCH ASSOC) ;

// -- Boucle de traitement de chaque client --

STab Comptes=SRequetePreparee->fetchAll();

// -- Conversion de la colonne solde au format francais --

foreach ($Tab Comptes as $Num => Sun cpt)
{

$un_cpt['Solde Compte']=number format (Sun cpt['Solde Compte'],
2,","," ll).H €ll,.

$Tab Comptes[SNum]=$un cpt;

}

// -- Affichage des données retournées --
Affichage Liste Comptes (Stexte, $Tab Comptes);
// -- Fermeture de la requéte --

SRequetePreparee->closeCursor () ;
return STab Comptes;

126

}

catch (Exception $e) {

STitreMessage = S$contexte ;

STexteMessage Se->getMessage () ;

Affiche Message Erreur ($TitreMessage, $TexteMessage);
SERR_TRAIT=true;

// ===
// -- Fonction outil d'affichage du message d'erreur --
// ===
function Affiche Message Erreur ($titre,$message)

{

?>

<fieldset>

<legend><?php echo S$titre ?></legend>

<?php echo $message ?>

</fieldset>

<?php

// s==s=s====s=====ss=sss===ss===ssssssss===sss=s=ssss=ssss====
// -- Fonction outil d'affichage d'un tableau de comptes --
// ===
function Affichage Liste Comptes($titre,$tcomptes)
{
// -- Affichage entéte du tableau --
reset (Stcomptes) ;
$un_compte=current (Stcomptes) ;
$liste champs=array keys(Sun compte);
?>
<table summary="Tableau de réésultat">
<caption><?php echo $titre;?></caption>
<thead>
<tr>
<!-- entéte du tableau -->
<?php
echo "<tr>";
Snbchamps=0;
foreach(Sliste champs as $nom champ)
{
echo "<th>$nom_ champ</th>";
Snbchamps++;
}
echo "</tr>";
// -- Affichage des lignes du tableau --
if (count (Stcomptes) ==0)

{

127

echo "<td colspan=\"$nbchamps\">Aucun compte à
afficher</td>";
}
else
{
foreach (S$tcomptes as $indice => Sun compte)
{
echo "<tr>";
// importation des variables a partir de 1'étiquette des
champs
extract($un_compte,EXTR_OVERWRITE);
echo "<tr>";
foreach(Sliste champs as $nom champ)
{
$val=$$nom champ;
echo "<td>S$val</td>";
}
echo "</tr>";
}
}
>
</table>
<?php

// ==

// -- Fonction d'information sur 1'état d'un seul compte --

// ==
function Info_Compte ($compte)

{

global
$ERR_TRAIT,$TYPE_DBB,$SERVEUR,$BASEDD,$LOGIN_ADM,$MDP_ADM,$TAB
LECOMPTES, STABLECLIENTS;

try {
// -- Contexte pour le message d'erreur --
Scontexte="Connexion base de données";
// —-- Connexion de la base de données --
Sbdd = new

PDO ($TYPE DBB.":host=".S$SSERVEUR.";dbname=".S$BASEDD, $LOGIN ADM,
SMDP ADM, array (PDO::ATTR PERSISTENT => true));

// -- Définition du codage en UTF8 --
Sbdd->exec ("SET CHARACTER SET utf8");
// -- Initialisation des Exceptions PDO pour prepare --

ded—>setAttribute(PDO::ATTR_ERRMODE,
PDO: :ERRMODE EXCEPTION) ;
Scontexte="Problème de requéête sur la table";
// -- Préparation de la requéte --
Srequete sgl='SELECT
cb.ID Cpt,cb.Agence,cb.Numero,cb.Type,cl.Nom,cl.Prenom,ROUND (c

128

b.Solde,2) Solde Compte FROM '.STABLECOMPTES.' cb INNER JOIN
' .STABLECLIENTS.' cl ON cb.ID Clt=cl.ID Clt WHERE
ID Cpt=:compte';
SRequetePreparee = Sbdd->prepare(Srequete sqgl);
// -- Liaison avec les paramétres --
SRequetePreparee->bindParam(':compte', S$compte,
PDO::PARAM INT);

// -- Exécution de la requéte --
SRequetePreparee->execute () ;

// -- Retourne un tableau associatif --
SRequetePreparee->setFetchMode (PDO: : FETCH ASSOC) ;

// -- Boucle de traitement de chaque client --

STab Infos Cpt=$RequetePreparee->fetchAll();

// -- Conversion de la colonne solde au format francais --

foreach ($Tab Infos Cpt as $Num => Sun cpt)
{

$un_cpt['Solde Compte']=number format (Sun cpt['Solde Compte'],
21"1"1" ") . €";
$Tab Infos Cpt[$Num]=Sun cpt;
}
S$Tab Infos Un Cpt=STab Infos Cpt[0];
return $Tab Infos Un Cpt;
}
catch (Exception $e) {
STitreMessage = S$contexte ;
STexteMessage = S$e->getMessage () ;
Affiche Message Erreur ($TitreMessage, $TexteMessage);
SERR_TRAIT=true;

function Virement ($NumCptDebit, $NumCptCredit, $MtVirt)

{

global
$ERR_TRAIT,$TYPE_DBB,$SERVEUR,$BASEDD,$LOGIN_ADM,$MDP_ADM,$TAB
LECOMPTES, STABLECLIENTS;

$virement effectue = true ;

$ConnexionBDD = false;
$TransactionDemarree = false;

try {
// -- Contexte pour le message d'erreur --
Scontexte="Connexion base de données";
// —-- Connexion de la base de donnéées --
Sbdd = new

PDO ($TYPE DBB.":host=".S$SERVEUR.";dbname=".SBASEDD, $LOGIN ADM,
SMDP ADM, array(PDO::ATTR PERSISTENT => true));

129

$ConnexionBDD=true;
// -- Initialisation des Exceptions PDO pour prepare --
ded—>setAttribute(PDO::ATTR_ERRMODE,

PDO: :ERRMODE EXCEPTION) ;

// -- Définition du codage en UTF8 --

Sbdd->exec ("SET CHARACTER SET utf8");

// -- On gere le virement dans une transaction SQL --
// ======ss====s====ss===========

// == On débute la transaction ==

// ==s====s=====s=====ss===========

// -- Contexte pour le message d'erreur --

Scontexte="Initialisation virement";
Sbdd->beginTransaction () ;
STransactionDemarree=true;

// =======s==========s======

// == On débite le compte ==

[/ =======s==========s======

// -- Contexte pour le message d'erreur --
Scontexte="Débit du compte"

// -- Préparation de la requéte --

Srequete sqgl='UPDATE '.STABLECOMPTES.' SET
Solde=Solde+:MontantVir WHERE Id Cpt=:NumCptOperation';

Sreponse = $bdd->prepare($requete sql);

// -- Liaison avec les paramétres --

Sreponse->bindParam(':MontantVir', $MontantVir);

Sreponse->bindParam (' :NumCptOperation', $NumCptOperation,
PDO::PARAM INT);

// -- Affectation des valeurs pour les paramétres --
SMontantVir = -$MtVirt ;
SNumCptOperation = $NumCptDebit ;

// -- Exécution de la requéte --
Sreponse->execute () ;

// -- Fermeture de la requéte --
Sreponse->closeCursor () ;

// ==========================

// == On crédite le compte ==

// ==========================

// -- Contexte pour le message d'erreur

Scontexte="Crédit du compte";

// La requéte est déja préparée, elle ne change pas

// les parametres sont déja liés (bind) ils ne changent pas
// Affectation des valeurs pour les parameétres

SMontantVir = +$MtVirt ;

SNumCptOperation = $NumCptCredit ;

// -- Exécution de la requéte --

Sreponse->execute () ;

// -- Fermeture de la requéte --

Sreponse->closeCursor () ;

130

[/ ===m==mm==mmmmmmmmmmmm—mees

// == On valide la transaction ==

// -- Si aucune erreur, on valide la transaction --
Scontexte = "Validation virement";

Sreponse = $bdd->commit () ;

}
catch (Exception $e) {
A ——

// == On annule la transaction ==
if (SConnexionBDD && S$TransactionDemarree)

try {
$bdd->rollback() ;
}

catch (Exception Ser) {

$TitreMessage = 'Problème sur le virement -
Transaction annuléée';
STexteMessage = 'Annulation : '.Ser->getMessage();

Affiche Message Erreur ($TitreMessage, $TexteMessage);
$virement effectue=false;

}

}

STitreMessage = 'Problème sur le virement -
Transaction annuléée';
STexteMessage = S$contexte.' : '.Se->getMessage();

Affiche Message Erreur ($TitreMessage, $TexteMessage);
Svirement effectue=false;

}

return Svirement effectue;

}
?>

Voici le fichier MySQL PDO transaction include param dbb.php

Listing 10-1.14 : fichier MySQL_PDO_transaction_include_param_dbb.php

<?php

// -- Paramétres de connexion a la base de données --
STYPE DBB="mysql";

$SERVEUR="1localhost";

SBASEDD="CoursPHP";

STABLECOMPTES="comptes bancaires";
STABLECLIENTS="clients bancaires";

$LOGIN ADM="root";

SMDP ADM="xxxx";

131

7>

Remarque

Il est préférable d’utiliser un compte MySQL autre que root pour effectuer cette transaction.
Ce compte doit avoir le droit de consulter les données sur les tables « comptes_bancaires »
et « clients_bancaires » (SELECT) et le droit de modifier les données de la table
« comptes_bancaires (UPDATE). Le texte « xxxx » doit étre remplacé par le vrai mot de
passe ou bien par " si aucun mot de passe n’est affecté.

Pour le web avec des listes déroulantes

Le programme MySQL PDO formulaire ajax prepare web.php est une varia-
tion du programme précédent utilisant les requétes préparées.

Il propose une interface de saisie beaucoup plus conviviale. Il utilise les listes dé-
roulantes pour saisir successivement 1’agence, le client, et le compte a débiter, ainsi
que I’agence, le client et le compte a créditer.

Chaque liste déroulante est alimentée par les résultats d’une requéte SQL. Le
contenu de la liste suivante dépend de la sélection effectuée dans la liste précé-
dente. Ainsi si I’agence bancaires « A » est choisie, seuls les clients de cette agence
seront proposés dans la liste suivante. Si parmi cette liste le client « C » est sélec-
tionné, seuls les comptes de ce client seront proposés dans la liste suivante.

Ce programme utilise le langage JavaScript Ajax.

11 utilise les programmes suivants :

* traitement clients credit prepare.php : «include » qui géneére la liste
déroulante des clients et effectue la sélection du client a créditer ;

* traitement clients debit prepare.php : «include » qui génére la liste
déroulante des clients et effectue la sélection du client a débiter ;

* traitement comptes credit prepare.php : «include » qui génere la liste
déroulante des comptes et effectue la sélection du compte a créditer ;

* traitement comptes debit prepare.php : «include » qui génére la liste
déroulante des comptes et effectue la sélection du compte a débiter ;

* MySQL PDO_transaction secure prepare ajax web.php : «include » qui
effectue le virement ;

* MySQL PDO_fonctions ajax prepare.js: «include» contenant les fonc-
tions JavaScript Ajax ;

Nous ne présentons pas ici ce programme qui est téléchargeable sur le site de
I’éditeur, mais des copies d’écran de son exécution.

La figure 10-1.23 présente le premier écran de l’interface sans aucune saisie.
Seules les agences pour le compte de débit et de crédit apparaissent.

132

Saisie du virement

Compte a débiter

Agence: _. Choisissez une agence — j

Compte a créditer

Agence : _. Choisissez une agence — j

Montant du virement

Montant: <8533 €

Valider : Valider | Effacer

Figure 10-1.23

Virement : Liste déroulante-Ecran-1

La liste déroulante de I’agence a été alimentée par une requéte SQL sur la table

« agences_bancaires » (figure 10-1.24).

Saisie du virement

Compte a débiter

Agence : [Choisissez une agence — j
—- Choisissez une agence —
3 PN 00523 Agence Itali
Compte a créditer oy r
00521 Agence Voltaire
Agence: _ Choisissez une agence —

Montant du virement

Montant: 2532 €

Effacer

Valider : Valider

Figure 10-1.24

Virement : Liste déroulante-Ecran-2
Dés la sélection d’une agence la liste déroulante du client apparait (figure 10-

1.25).

133

Saisie du virement

Compte a débiter

Agence : {00602 Agence République j

Client: . Choisissez un client — j

Compte a créditer

Agence: _. Choisissez une agence — j

Montant du virement

Montant: 2533 €

Valider : Valider | Effacer

Figure 10-1.25

Virement : Liste déroulante-Ecran-3

Elle a été alimentée par une jointure interne sur les tables « comptes_bancaires »
et « clients_bancaires » afin de faire apparaitre les noms et les prénoms des clients
ayant un compte dans cette agence (Figure 10-1.26).

Saisie du virement

Compte a débiter

Agence : 00602 Agence République M

Client: “Choisissez un client — j
—- Choisissez un client —
DE-LA-FONTAINE Jean

Compte a créditer
MARTIN Albert
Ag : MURCIAN Carole

Montant du virement

Montant: <3532 €

Effacer

Valider : Valider

Figure 10-1.26

Virement : Liste déroulante-Ecran-4

La tentative de validation en cours de sélection fait apparaitre un message
d’erreur reprenant les valeurs saisies (Figure 10-1.27).

134

Saisie du virement

Compte a débiter

Agence : 00602 Agence République j
Client: DUPONT Jean |
Compte : . Choisissez un compte - j
Compte a créditer
Agence : . Choisissez une agence — j

Montant du virement

Montant: <a532 €

Valider : Valider | Effacer |

Débit : Sélectionnez un compte pour : DUPONT Jean |

Figure 10-1.27

Virement : Liste déroulante-Ecran-5

La liste déroulante des comptes a été alimentée par une requéte SQL sur les
comptes de ce client dans cette agence. Seuls les comptes pouvant supporter un
virement sont affichés, ce qui exclu les cartes de paiement et autres qui sont ados-
sées a un compte courant (Figure 10-1.28).

Saisie du virement

Compte a débiter

Agence : 00602 Agence République M
Client: DUPONT Jean M|
Compte : [7g5743F Comple de dépots - 450,98€ | ~|
= phqisT|55ez un compte - S
Compte a créditer 1164760 Livret A: 620.00€
Agence: _. Choisissez une agence — j
Client: _. Choisissez un client — j
Compte : — Choisissez un compte — |

Montant du virement

Montant: <8532 €

Valider : Valider | Effacer

Figure 10-1.28

135

Virement : Liste déroulante-Ecran-6

L’écran suivant montre 1I’ensemble des données renseignées (Figure 10-1.29).

Saisie du virement

Compte a débiter
Agence : 00602 Agence Républigue -
Client: DUPONT Jean |
Compte : 165143p Compte de dépdts : 450,98 € j
Compte a créditer

Agence : (0521 Agence Voltaire M|
Client: DE-LA-RUE Laurence |

Compte : 045123P Compte de dépéts : 175,70 € j

Montant du virement

Montant: 50,98 €

Valider : Valider | Effacer

Figure 10-1.29

Virement : Liste déroulante-Ecran-7

La validation affiche un écran de récapitulation et de confirmation (Figure 10-
1.30).

Etat des comptes AVANT virement : Virement de 50,98 €, du compte 1 -> le compte 39

ID_Cpt Agence Numero Type Nom Prenom | Solde_Compte
1 00602 165143P Compte_Dépots DUPONT JEAN 450,98 €
39 00521 045123P Compte_Dépots DE-LA-RUE LAURENCE 175,70 €

Confirmation du virement

Merci de confirmer le virement :
Oui © Non

Confirmer |

Figure 10-1.30

Virement : Liste déroulante-Ecran-8

Une fois confirmée, le virement est effectué en mode transactionnel, et le résultat
est affiché (Figure 10-1.31).

136

Résultat : Virement de 50,98 €, du compte 1 -> le compte 39

ID_Cpt Agence Numero Type Nom Prenom | Solde_Compte
1 00602 165143P Compte_Dépots DUPONT JEAN 400,00 €
39 00521 045123P Compte_Dépots DE-LA-RUE LAURENCE 226,68 €

Figure 10-1.31

Virement : Liste déroulante-Ecran-9

Le programme MySQL PDO formulaire ajax query web.php est une varia-
tion du programme précédent utilisant la méthode « query » a la place des requétes
préparées. 11 utilise les programmes suivants :

* traitement clients credit query.php : «include» qui génere la liste
déroulante des clients et effectue la sélection du client a créditer ;

* traitement clients debit query.php : «include » qui génére la liste dé-
roulante des clients et effectue la sélection du client a débiter ;

* traitement comptes credit query.php : «include» qui génere la liste
déroulante des comptes et effectue la sélection du compte a créditer ;

* traitement comptes debit query.php : «include » qui génére la liste dé-
roulante des comptes et effectue la sélection du compte a débiter ;

* MySQL PDO_transaction secure prepare ajax web.php : «include » qui
effectue le virement ;

* MySQL PDO_ fonctions ajax query.js: «include » contenant les fonctions

JavaScript Ajax ;

137

10-1.1 PréSeNtaAtiON ..ovicciceeesisesrisssisnissessssssssnssssessssssssnssssassssssssessssssssnssssasssnnnss 1

10-1.2 Le lIangage SQL ... nsssns 1
Acceés au serveur de Base de dONNEEs ... rrrerrrsessessessessssssssssssessessessessns 2
Afficher toutes les bases de dONNEES.......rrrrrrrrrsssessessessssss s sessessesses 2
Quitter le serveur de Base de dONNEEScerrrrerrersesssssssssssssssssssssassnssenns 2
Gestion d'une base de dONNEES........ecreceesrrsssssrssrss s sassassassnssenas 3

03 4/=Y= 10 (0) o 1P 3
SUP PIESSION ettt 3
GeStion d'UNE tADIE e 3
03 4/=Y= 1 (0) o 1T
Affichage des tables
Affichage de la structure d'une table ... 4
Suppression complete de 1a table ... 4
Vider la table de SES AONNEES.......cceerereececreeesees e s s ssssens 5
GeStion deS dONNEES....... s s s sae e s mesmssmssmnnenns 5
| BSTY=D arw (o) 016 =Te Fo s Do =Y<Ly 5
AffiChage oot
Modification
Suppression
LS Criteres de SEIECLION. ..ottt e st ns s 6
Le filtrage aVeC WHERE ... ssssssssssssssssssss s sssssssss s sssassssssssssssassssses 7
L tri QVEC ORDER BY ..ttt ssssss sttt st ssssssssssssassssssssssssnens 9
La limitation @VEC LIMIT ... ieossnsssens
Le filtrage aveC HAVING ... eoeeeeseeesseessessanes

Le regroupement avec GROUP BY
Les fonctions SQL

Quelques fonctions sur les chalnes de Caracteres ... eeneernseesssessesssseennes 17
CONCAT oooveeereeererresesrssssesss s essss s s R SRR
LENGTH.coeoteeeeetseseetsesessssssesssssssessssesesssssssssssssssssss e sesssssssssss st essas s ssssssssssssesssssssssssssesesss

REPLACGE ...ttt ss bbb s s bbb
SUBSTRING

RIGHT oooooeeeveeeeeesesessssesessssssssssssesessssesessss s ssss s sss s e s RS RRRRRRRe0 21

REVERSE ...cooeeeetseseessesessssssssssssssssssesessssssssssssss st sessss s sssss s sssss s s sssssssssssssesssssssssssssasesss 21

TRIM, LTRIM, RTRIMoorrererrrereersssessssesssmssesessssssessssssssssssesssssssssssssssssssessssssessssssssssanns 22

LPAD, RPAD.........

LOWER, LCASE

UPPER, UCASEooueeeeersseernsesesssesessssssssssssssssssssesssssssssssssssssssesssssssssssssssssssssessssssessssassssssanes

LOCATE, INSTR .ooeetereerreseessssesesssesessesesssssssssssssssssssessssssesssssssasssss 24
Les fonctions math@matiqUes ... ceeeeeeenneeseeeersseesesssesssessssesssssesssssssssssssssssssssses 25

TRUNCATE

ROUNBD..c.oueeeteeeeertsesessssesessssssssssssesessssesessssssssss s sss s ses s s s bR R bR

Les dates €N SQL .ttt et s et
Les types de dates et d’heures

Sélection des enregistrements selon une date
Les fonctions de dates et d'heUTres ...
NOW, CURDATE, CURTIME........coieerirsessessissesssas
DAY, MONTH, YEAR ...ttt ss s ssss s ssssss s ssssssssssssase
DATE_FORMAT...
DATEDIFF ...oeeeereesetseeseisesssssesss s ssss s s sessss st sssssas
Les fonctions MySQL d'information.......ccneeeneeseeseesseesssessesssessessees
Information sur MySQL, les utilisateurs et la base de données........cccceuvereeenreenns 29
VERSION oottt sses s bbb s een 29
USER, SYSTEM_USER, SESSION_USER.......cosnerirenerstnsesssnsessssssssssssssssessssssesssssssssees 30
CURRENT_USER ..ottt ssss st s ssssss s snsssssens 30
SCHEMA, DATABASEouneeeeeeeerseseerssseessssssssssssessssssssssssssssssssssssassssssssssssssssessssssssssssssasssss 30
CONNECTION_ID ...
BENCHMARK ..ottt ssssssss s ssss s s ssssss st ssssssssssssane
CHARSET oottt b
COERCIBILITY oeeereteesseisesssesesssssssssesssssssssssssssssssss s ssss st s ssss s ssss s sssssssssssssssssssssssssens
COLLATION .ot ssssss s sssss s s ssssss s sssssssens
Information sur les derniéres opérations....
FOUND_ROWS.....oeoeereteereisessersess s ssssssssssssssasssssssssssssssssane
ROWS_COUNT ..oeeeereeretserserserssssstsssssssssssssssssssssssssssssssssss s s ssssssssssssssssssssssssane
LAST_INSERT_ Dottt ss s ssss s ssssssssssssssssssssssssssane
Les JOINtUTeS eNIre taDIES ...ttt sesseessessssssse s s sssssesasees
LES tADIES SUPPOTT coureeereerrsreeseesseesseessessssesssessssssssssssesssssssssssasssss bbb s b sssasssssssesanes
La table « ClieNtS_DANCAITES » wovvirreeccerereeeeresesssssesessssssesessasses

La table « COMPLES_DANCAITES » ..vcuurevueeueersrerseeseessesssesssessssesssssssssssessssssssssssssssssssssnes
Relation entre les tables
LES tYPES A€ JOINTUTE ..ovcerreeeeeeeeeerseesseeesesssessessssssssesssssssssssass s s s s s sssssssesssssans
Mise en ceuvre de 1a JOINTUTe INTEITNE ... ecereeereeeeereeesseesseersessssessesssesssssssesssssssesssesans

139

W T 5 U 0 40

AVEC INNER JOIN ..oueereeersesseeseessssssssessss s s ssss s sssssss s st sssssssssssssssssssessssssens 46

Mise en ceuvre de la jointure externe avec LEFT JOIN et RIGHT JOIN............... 48
Sauvegarde de la base de dONNEES. ...
Restauration de la base de donnéesonn———
LeS reqUELES PréPar€es.....cummsisisses
20 01 0 03§ 1T
Les variables UtilISAtEUTS. ... reeeseeseeseeseeeseseessese s sssse s sss s sssssesssees
Création et MOdIfiCatioN ...
L AffICRAEE «.eeueeereeeeeeseeeseeeete ettt e sess s ss bbb
DT 3= (o) PP
Création d'une reqUELE PréPare ... rneereeesesssesssesssesssssssssssssssssssesssees
Exécution d'une reqUELE PréPare€eoeereeeneeesesssesssesssesssessssssssssssssssessaees
Suppression d'Une reqUELE PréParfe ... cneesseesseessesssesssessssssssssssssessees
AVANTAZES oercereereereceeeee e s s e s
Le mode transactionnel ...
Problématique iNItialeoceeeecereeeeeseeseeseeseeeseseesese s sss e sss s sssssessses

Une caractéristique du moteur de stockage
Gestion de la validation automatique via GutoCOMMILceoreeeeeenreerneeneeereenes 57
PriNCIPE o
AfFIChAZE A€ IELAL ettt essse s s bbb
Modification de I'éLat ...

Inconvénients......conwes

Exemples d’utilisation
Exemple de fonCtioNNEemMENT. ... ceeeeceneeseesseerseeseessessseessssssssssesssssssssssssssssssssnes 59
Impact pour les autres ULIliSAtEUTS. ... rereeereerseeseesseerseesseesssesssessssessssssssssssssesas 62

Utilisation d’une transaction spécifique avec START TRANSACTION......... 65

COMMIT
ROLLBACK
EXEINPLES w.oveerieeeeeeeesseesseesetessessseesee e es s s b s bbb

EXemple d’annulation ... ceeeeeeeeseessessesssesssnes
Exemple de Validation ... eceeeeeseeeseessessssssesssssssesssssessssssssssssssssssssssssssssssssnes
La gestion des utilisateurs

20 01 0 03§ 1T
Affichage des utilisateurs eXiSTaNTS.....cconereeneesnerseesseseessesseseseesseessesssessseesseens 70
L taD1E MY SGLUSET w.eureeeereeeeeteetseesestse s ssses s s s ssses s bbb ss b s b 70

L UtiliSAtEUT QNOMYINEceureeeseeeersreesseeeserssessessssesssessssssesssas s bbb ss s s b sesans 70
Création d’'un compte utilisateur CREATE USER ... 71
Gestion des privilegesonreenneereeennes

Affichage des privileges SHOW GRANTS

AJOUL A€ PIIVIIEZES GRANTcoeeeeeeeereieeesetiseessesese s s sssssss s ss et ss s sseen

Pour le compte personnesadm@%...

Pour le compte personnesadm@localhost
Variations SyNtaxiqUES ...
Retrait de Privileges REVOKE ... eseeseesssssseesses
Sur une table PArtiCULIEIE ...ttt ses s ssesssssssssssssesas
Variations syntaxiques...........
Gestion des parametres de connexion
PrODIEMATIQUE ...ceveeeeeeeeeeeeseesseeteeese s sssessse s s s b s s bbb
Affichage des parameétres...............
Modification des parametres
Renommer un compte utilisateur RENAME USER
Suppression d'un compte utilisateur DROP USER

10-1.3 Sécurisation de MySQL.......cccuummmsmsmsmsmssssssssmsssssssssssssssssssssssssssssses 78
Sécurisation des COMPLEScuvivrvmnsssmsnsmninn 78
TSI o104 o) 1 30 oo X0) o T 79
MOT A€ PASSE wrvureeereernerseeseesssesssessssssssesssessssessse s s sse s E s AR b b 79
ACCES A AISTANCE . c.vuirererer e 79

TS oT0) ¢ oY 01 W3R=D N0 4§74 00 L= 00 TP 80
L2 DASE A€ LESE ceureureurieureenrerseeeet st seessesssessses bbbt s s e st sb s 81
SCIriPt A€ SECUTTISATION .ceuivueeeeeeeeeece st esseese s sse s ess s ess s bbbt sesasees 81
SECUriSAtioN FESEAU ...vviiiiii i ————————— 84
10-1.4 PDO - PHP Data Objects - Complément..........cccocvsrresesesesesans 85
Présentation.......o————————— 85
Programmes PHP avec filtrage et fonctions SQLcccouirsmnnnmsssssnsennsnnnns 85
L8 FIET AR ettt bbb s s bbb 85
Les fonctions d’ a@lréZat......ocreererseeseesessessesseessesssesssssssessssssse s sssssssssesssees 86
Les fonctions sur les chalnes de Caracteres....... o nenneenseesseneesseesnens 88
Les fonctions Math@matiqUeS.....coeeenneenneenseensesseessessseesseesessssssessssssssssssesssees 89
Les fonctions de dates et d’heUres......eeeneeeneeeneeseeseesesssesesssesssessssssessees 91
LeS JOINTUIES INTEINES ..o sss s ssss s sasssssens 99

LS JOINTUIES EXEEITIES ..cuveereuerressirsesssessssssessssssesssssss s ssssssssssssssse s sssssssssssnns 104

Le mode transactionnel avec MySQL et PDO.......ccccuirnmnmnmsnssssssnsnssssnsesnnns 106
20 o1 0 U033 1T 107

| TSI (o) s Lot 1 10) 4 K- TP 107

LS SYNTAXES .eueuceerrerrerresseeesee e res s sessesess s s st s ses s s ses s sessenes 107
Avec des reqUELES STtANAATAS ... weeeeerreeseeeeerseessessse s sesssssssssssssssssssssssassssssssssans 108
AVEC dES TEQUELES PIéPATEES. .ccoueeurceeersreessenssesssesssesssesssessses s s sssssss s ssssssasssans 109

E R EINPLES ettt ettt et es s bbb s 110
EDN SHElloo s 110
POUT 1€ WED .ottt 120
Pour le web avec des listes déroulantes. ..., 132

142

A
ALTER TABLE (instruction SQL).....cccuneuennes 3
autocommit (variable SQL)cccouevuueen. 58, 60
AVG() (fonction SQL) c.ovverrreerneernrerrneeenns 13,86
B
beginTransaction() (méthode PDO)....... 107
BENCHMARK() (fonction SQL) .cccovvuereenees 31
C
CHARSET() (fonction SQL) coeerureeerneerereeenns 31
Classes
DateTime() 92
COERCIBILITY() (fonction SQL) ..ccuruereerees 31
COLLATION() (fonction SQL) ..oovveerrrurereeeens 32
Commandes UNIX
mysql 2,52
mysqldump 51
COMMIT (instruction SQL) ..ccouueurreenes 59,61
commit() (méthode PDO)couuvurmeerrrreennns 107
CONCAT() (fonction SQL)..ccceereueereerenns 17,88
CONNECTION_ID() (fonction SQL)....ccccre.. 30
COUNT() (fonction SQL) .ceemeereeeenerrsseeenns 14
CREATE DATABASE (instruction SQL)........3
CREATE TABLE (instruction SQL)....cccccc.. 3
CREATE USER (instruction SQL)...cccccneueen. 72
createFromFormat() (méthode)................. 92
CURRENT_USER() (fonction SQL) ...ccevveree. 30
D

date_default_timezone_set() (méthode)..92
DATE_FORMAT() (fonction SQL)........ 28,92
DATEDIFF() (fonction SQL) ...oueveeersereeeens 29
DateTime (classe) 92
DAY(),MONTH(),YEAR() (fonction SQL)..27
DEALLOCATE PREPARE (instruction SQL)

56
DELETE (instruction SQL)cccoumeuerneeenn. 5,81
DESCRIBE (instruction SQL)...couuenmeeeneeenenes 4
DROP DATABASE (instruction SQL)............. 3

143

DROP TABLE (instruction SQL)............. 4,81

DROP USER (instruction SQL) ... 78, 80
E
EXECUTE (instruction SQL) ..ccconverneeeurecenns 55
F

Fonctions SQL
AVG() 13,86
BENCHMARK() 31
CHARSET() 31
COERCIBILITY() 31
COLLATION() 32
CONCAT() 17,88
CONNECTION_ID(] oveveveerermsessssssssssssssssans 30
COUNT() 14
CURRENT_USER() 30
DATE_FORMAT() ccooonmrervmernsssssisssenanns 28,92
DATEDIFF() 29
DAY(),MONTH(),YEAR() ..cermurrrrmerrrrrirnans 27
FOUND_ROWS() 33
LAST_INSERT_ID() covverererermsenssessssssssisnans 34
LCASE() 23
LEFT() 21
LENGTH() 18
LOCATE(),INSTR()eevereseresmsesssasessssssressans 24
LOWER() 23,88
LPAD(),RPAD() 22
MAX() 15
MIN() 16
NOW(),CURDATE(),CURTIME()cocee... 27
REPLACE() 19
REVERSE() 21
RIGHT() 21
| 3(0101\\) D () SN 13, 25,42, 86
ROWS_COUNT() 34
SCHEMA(),DATABASE() ..connvvvermerererienans 30
SUBSTRING() 20
SUM() 16,42, 86
TRIM(),LTRIM(),RTRIM() «ecevrerrrrsrenrrenans 22
TRUNCATE() 25,90
UPPER(),UCASE() 23

USER(),SYSTEM_USER(),SESSION_USER

0 30

VERSION() 30

FOUND_ROWS() (fonction SQL) ..ccourereerees 33
G

GRANT (instruction SQL) ...coccoerneeenerenrecenns 73

GROUP BY (instruction SQL) 11, 42,86

H

HAVING (instruction SQL) ...ccouermreenees 11,86
I

IDENTIFIED BY (instruction SQL).....c.c..... 72

INNER JOIN (instruction SQL)............
INSERT INTO (instruction SQL)
Instructions SQL

ALTER TABLE 3
COMMIT 59,61
CREATE DATABASE..c..ooosesessseseies 3
CREATE TABLE 3
CREATE USER 72
DEALLOCATE PREPARE ..o 56
DELETE 5,81
DESCRIBE 4
DROP DATABASE 3
DROP TABLE 4,81
DROP USER 78, 80
EXECUTE 55
GRANT 73
GROUP BY 11, 42,86
HAVING 11, 86
IDENTIFIED BY 72
INNER JOIN 46,103
INSERT INTO 5
LEFT JOIN 48,104
LIKE 54
LIMIT 10, 86
ORDER BY 9,85
PREPARE 54
QUIT 2
RENAME USER 77
REVOKE 74

144

RIGHT JOIN 48,105
ROLLBACK ..corvreermesrsesssmsseeenns 59,60, 61
SELECT 5
SET 53
SET PASSWORD.....ccomreerrrsrreeenns 72,73,79
SHOW DATABASES 2
SHOW GRANTS 73
SHOW TABLES 4
SOURCE 52
START TRANSACTION....ccommureerrenane 59, 65
TRUNCATE TABLE 5
UPDATE 5,60
USING 55
WHERE 7,40
L
LAST_INSERT_ID() (fonction SQL).....ccc..... 34
LCASE() (fonction SQL) ..cceenmeeeurecenseeeseeenns 23
LEFT JOIN (instruction SQL)....cccveeren. 48,104

LEFT() (fonction SQL)...oeenmeerseeeneresseeenns
LENGTH() (fonction SQL)
LIKE (instruction SQL) ..cccoeenmeeseeenseeesseeenns
LIMIT (instruction SQL)...counmeerneeenens

LOCATE(),INSTR() (fonction SQL)ccccee.. 24
LOWER() (fonction SQL) wcovveermeerrrreennees 23,88
LPAD(),RPAD() (fonction SQL) .cccervrereerens 22
M
MAX() (fonction SQL).eeemeerereeesersseeenns 15
Méthodes
createFromFormat() ...cccmeeseceseseesecenns 92
date_default_timezone_set()cceruueen. 92
MIN() (fonction SQL) 16
mysql (commande UNIX)cccconrrurneennn. 2,52

mysqldump (commande UNIX).....cconueen. 51
N
NOW(),CURDATE(),CURTIME() (fonction
SQL) 27
0
ORDER BY (instruction SQL)cccccnuueenn. 9,85

P

PDO-PHP Data Objects
beginTransaction() (méthode)........... 107
commit() (méthode)....enmeerrrreennns 107
rollback() (méthode).....coomermeeenreereneens 107
PREPARE (instruction SQL) ..cccconeeneeenrecenns 54
QUIT (instruction SQL)....ccoeenmeeemeeenseeeseesssenes 2

R
RENAME USER (instruction SQL)cccueeeee. 77
REPLACE() (fonction SQL)..ccoueureeeneererecenns 19
REVERSE() (fonction SQL)..oeeeeenereereeenns 21
REVOKE (instruction SQL)....cceeemeeeereeenns 74
RIGHT JOIN (instruction SQL)............48, 105
RIGHT() (fonction SQL)..ceenmeerreeesereerecenns 21
ROLLBACK (instruction SQL)....... 59, 60, 61
rollback() (méthode PDO)....cccouommeerrrruennns 107
ROUND() (fonction SQL).......... 13,25,42,86
ROWS_COUNT() (fonction SQL) ..ccouuereerees 34

S
SCHEMA(),DATABASE() (fonction SQL)..30
SELECT (instruction SQL) ...conreenmeeeneeenenns 5
SET (instruction SQL) ...cceenmeerseceseeeesecenns 53

SET PASSWORD (instruction SQL).... 72, 73,
79
SHOW DATABASES (instruction SQL)......... 2

145

SHOW GRANTS (instruction SQL) 73
SHOW TABLES (instruction SQL)ccccuecuunece. 4
SOURCE (instruction SQL)
START TRANSACTION (instruction SQL)

59, 65
SUBSTRING() (fonction SQL)....cweerruereeeens 20
SUM() (fonction SQL).comeeereeererennae 16,42,86
T
Table
UTF8 3,31

TRIM(),LTRIM(),RTRIM() (fonction SQL)22
TRUNCATE TABLE (instruction SQL)......... 5

TRUNCATE() (fonction SQL)..ccccerreunnee. 25,90
U
UPDATE (instruction SQL)..cc.cocceneeeneeenn. 5,60
UPPER(),UCASE() (fonction SQL) ..o 23
USER(),SYSTEM_USER(),SESSION_USER()
(fonction SQL) 30
USING (instruction SQL)cooeereeeseeenrecenns 55
\%
Variables SQL
autocommit 58, 60
VERSION() (fonction SQL) ...coueereeemeernreennes 30
W
WHERE (instruction SQL)ccccueeuneeennees 7,40

