

1

10-1
COMPLEMENTS MYSQL

PLAN
10.1 Présentation
10.1 Le langage SQL
10.2 Sécurisation de MySQL
10.3 PDO – PHP Data Objects – Complément

OBJECTIF
• Maîtriser les syntaxes de base du langage SQL et le mode transactionnel.

10-1.1 PRESENTATION
Ce chapitre complémentaire détaille les requêtes du langage SQL servant de sup-
port aux programmes PHP du chapitre 10. Il aborde également le mode transac-
tionnel et en présente à la fois les syntaxes SQL et sa programmation PHP via
PDO.

10-1.2 LE LANGAGE SQL
Cette section présente les syntaxes SQL en ligne de commandes, sous le moniteur
MySQL, comme une suite de manipulations sans détailler chaque instruction. Un
tutoriel complet du langage SQL est disponible à l’URL : http://sql.sh

2

Accès au serveur de Base de données
La syntaxe suivante présente l’accès au SGBD MySQL sur le poste local (local-
host). Dans notre exemple, le texte mot_de_passe doit être remplacé par le mot de
passe effectif. S’il est indiqué sur la ligne de commande (-pmot_de_passe). Un
message prévient que cette méthode d’accès n’est pas sécurisée.

$ mysql --no-defaults -u root -pmot_de_passe -h localhost
Warning: Using a password on the command line interface can be
insecure.
...

La syntaxe suivante est à privilégier. Le mot de passe est saisi dans un second
temps. L’écho de sa frappe n’apparaît pas au moment de la saisie.

$ mysql --no-defaults -u root -h localhost -p
Enter password: xxxx
Welcome to the MySQL monitor. Commands end with ; or \g...

Remarque
Les syntaxes sous le moniteur SQL (après l’invite « mysql> »), sont présentées en majus-
cules, en respect des règles d’usage, mais elles peuvent être saisies en minuscules.

Afficher toutes les bases de données
Une fois connecté, il est possible d’afficher toutes les bases de données.

mysql> SHOW DATABASES;
+------------------+
|Database |
+------------------+
|information_schema|
|cdcol |
|mysql |
|performance_schema|
|phpmyadmin |
|test |
+------------------+
6 rows in set (0,00 sec)

Quitter le serveur de Base de données
Pout quitter le moniteur MySQL il suffit de saisir :

mysql> QUIT;
Bye

3

Gestion d’une base de données
Cette section présente la création et la suppression d’une base de données.

Création
La commande suivante crée la base « CoursPHP » avec un jeu de caractères utf8.

mysql> CREATE DATABASE CoursPHP CHARACTER SET 'utf8';
Query OK, 1 row affected (0,00 sec)

Suppression
La syntaxe suivante supprime la base de données « CoursPHP ».

mysql> DROP DATABASE CoursPHP;
Query OK, 0 rows affected (0,01 sec)

Gestion d’une table
Afin de simplifier les syntaxes de création, de suppression ou d’insertion de don-
nées dans une table, on peut indiquer la base de données à utiliser.

mysql> USE CoursPHP;
Database changed

Création
La syntaxe suivante crée la table « personnes » avec quatre colonnes, « ID » (int de
11 chiffres), « NOM » (varchar de 255 caractères), « Prenom » (varchar de 255
caractères), « Age » (int de 11 chiffres). Le moteur de stockage est InnoDB. La
saisie est effectuée sur plusieurs lignes.

mysql> CREATE TABLE IF NOT EXISTS personnes (
 -> ID int(11) NOT NULL,
 -> Nom varchar(255) NOT NULL,
 -> Prenom varchar(255) NOT NULL,
 -> Age int(11) NOT NULL
 ->) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8
COMMENT='Table de personnes';
Query OK, 0 rows affected (0,00 sec)

La clef primaire est affectée sur le champ « ID » :

mysql> ALTER TABLE personnes
 -> ADD PRIMARY KEY (ID);
Query OK, 0 rows affected (0,04 sec)
Records: 0 Duplicates: 0 Warnings: 0

La clef primaire « ID » est auto-incrémenté et sa numérotation démarre à 1 :

4

mysql> ALTER TABLE personnes
 -> MODIFY ID int(11) NOT NULL
AUTO_INCREMENT,AUTO_INCREMENT=1;
Query OK, 0 rows affected (0,01 sec)
Records: 0 Duplicates: 0 Warnings: 0

Affichage des tables
Voici la liste des tables présentes dans la base de données courante, « CoursPHP » :

mysql> SHOW TABLES;
+------------------+
|Tables_in_CoursPHP|
+------------------+
|personnes |
+------------------+
1 row in set (0,00 sec)

Affichage de la structure d’une table
La syntaxe pour afficher la structure de la table « personnes » de la base « Cours-
PHP » est :

mysql> DESCRIBE CoursPHP.personnes;
+------+------------+----+---+-------+--------------+
|Field |Type |Null|Key|Default|Extra |
+------+------------+----+---+-------+--------------+
ID	int(11)	NO	PRI	NULL	auto_increment
Nom	varchar(255)	NO		NULL	
Prenom	varchar(255)	NO		NULL	
Age	int(11)	NO		NULL	
+------+------------+----+---+-------+--------------+
4 rows in set (0,00 sec)

La syntaxe précédente indique explicitement la base de données et la table. On
aurait pu également saisir :

mysql> USE CoursPHP;
mysql> DESCRIBE personnes;

Suppression complète de la table
Voici la syntaxe pour supprimer la table « personnes » :

mysql> DROP TABLE personnes;
Query OK, 0 rows affected (0,01 sec)

5

Vider la table de ses données
La syntaxe suivante vide la table « personnes » de ses données sans la supprimer :

mysql> TRUNCATE TABLE personnes;
Query OK, 0 rows affected (0,01 sec)

Gestion des données

Insertion de données
L’insertion de quatre personnes dans la table « personnes » se note :

mysql> INSERT INTO personnes (ID, Nom, Prenom, Age) VALUES
 -> (1, 'DUPONT', 'JEAN', 28),
 -> (2, 'MARTIN', 'PIERRE', 56),
 -> (3, 'DE-LA-FONTAINE', 'JEAN', 110),
 -> (4, 'DE-LA-RUE', 'JEAN-CHARLES', 45);
Query OK, 4 rows affected (0,01 sec)
Records: 4 Duplicates: 0 Warnings: 0

Affichage
Voici l’affichage de tous les enregistrements contenus dans la table « personnes ».

mysql> SELECT * FROM personnes;
+--+--------------+------------+---+
|ID|Nom |Prenom |Age|
+--+--------------+------------+---+
1	DUPONT	JEAN	28
2	MARTIN	PIERRE	56
3	DE-LA-FONTAINE	JEAN	110
4	DE-LA-RUE	JEAN-CHARLES	45
+--+--------------+------------+---+
4 rows in set (0,00 sec)

Modification
La syntaxe suivante modifie le prénom de MARTIN (ID=2), en « PIERRE-
ANDRE » :

mysql> UPDATE CoursPHP.personnes SET Prenom = 'PIERRE-ANDRE'
WHERE personnes.ID = 2;
Query OK, 1 row affected (0,01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Suppression
La syntaxe suivante supprime la personne ayant l’identifiant numéro 3 :

6

mysql> DELETE FROM personnes WHERE ID=3;
Query OK, 1 row affected (0,00 sec)

L’affichage montre que cette personne est supprimée.

mysql> SELECT * FROM personnes;
+--+---------+------------+---+
|ID|Nom |Prenom |Age|
+--+---------+------------+---+
1	DUPONT	JEAN	28
2	MARTIN	PIERRE-ANDRE	56
4	DE-LA-RUE	JEAN-CHARLES	45
+--+---------+------------+---+
3 rows in set (0,00 sec)

Les critères de sélection
Il est possible d’affiner les requêtes SQL comme SELECT, UPDATE ou DELETE
avec des critères de sélection tels que : WHERE, ORDER BY, LIMIT. Pour mon-
trer l’usage des ces critères, nous avons insérez de nouvelles données dans la table
« personnes » dont voici le contenu :

mysql> SELECT * FROM personnes;
+--+--------------+---------------+---+
|ID|Nom |Prenom |Age|
+--+--------------+---------------+---+
1	DUPONT	JEAN	28
2	JACQUENOD	JEAN-CHRISTOPHE	54
3	MURCIAN	CAROLE	44
4	LERY	JEAN-MICHEL	25
5	DE-LA-RUE	JEAN-CHRISTOPHE	27
6	MARTIN	PIERRE-DAVID	27
7	MARTIN	PIERRE	56
8	JACQUENOD	FREDERIC	25
9	JACQUENOD	LAURENCE	24
10	DUMOULIN	JEAN-CHRISTOPHE	54
11	LABONNE-JAYAT	OLIVIER	54
12	DE-LA-FONTAINE	JEAN	110
13	LEVY	SAMUEL	56
14	DE-LA-RUE	LAURENCE	25
15	DUPONT	JEAN	54
16	MARTIN	ALBERT	25
+--+--------------+---------------+---+
16 rows in set (0,00 sec)

7

Le filtrage avec WHERE
Ce critère permet de filtrer sur une partie des données. Par exemple, on peut affi-
cher les prénoms et noms des personnes ayant 25 ans :

mysql> SELECT Prenom, Nom FROM personnes WHERE Age=25;
+-----------+---------+
|Prenom |Nom |
+-----------+---------+
JEAN-MICHEL	LERY
FREDERIC	JACQUENOD
LAURENCE	DE-LA-RUE
ALBERT	MARTIN
+-----------+---------+
4 rows in set (0,00 sec)

IL est également possible d’utiliser l’opérateur LIKE avec la condition WHERE
pour cherche d’après un modèle particulier. La syntaxe suivante affiche la liste des
personnes ayant un prénom commençant par JEAN. Le caractère % indique un
nombre quelconque de caractères.

mysql> SELECT Prenom, Nom FROM personnes WHERE Prenom LIKE
'JEAN%';
+---------------+--------------+
|Prenom |Nom |
+---------------+--------------+
JEAN	DUPONT
JEAN-CHRISTOPHE	JACQUENOD
JEAN-MICHEL	LERY
JEAN-CHRISTOPHE	DE-LA-RUE
JEAN-CHRISTOPHE	DUMOULIN
JEAN	DE-LA-FONTAINE
JEAN	DUPONT
+---------------+--------------+
7 rows in set (0,00 sec)

De même l’opérateur BETWEEN avec la condition WHERE autorise un filtrage
sur une plage de valeurs. La syntaxe suivante travaille sur la table « clients ». Elle
affiche les clients ayant entre 1 et 2 enfants :

mysql> SELECT ID,Nom,Prenom,Etat_Civil,Nb_Enfants FROM clients
WHERE Nb_Enfants BETWEEN 1 AND 2;
+--+-------------+---------------+-----------+----------+
|ID|Nom |Prenom |Etat_Civil |Nb_Enfants|
+--+-------------+---------------+-----------+----------+
1	DUPONT	JEAN	Marié	2
2	JACQUENOD	JEAN-CHRISTOPHE	Marié	1
3	MURCIAN	CAROLE	Célibataire	1
4	LERY	JEAN-MICHEL	Marié	2
10	DUMOULIN	JEAN-CHRISTOPHE	Marié	2

8

11	LABONNE-JAYAT	OLIVIER	Célibataire	1
14	DE-LA-RUE	LAURENCE	Marié	1
15	DUPONT	JEAN	Veuf	2
16	MARTIN	ALBERT	Célibataire	1
+--+-------------+---------------+-----------+----------+
9 rows in set (0,00 sec)

Cette autre syntaxe affiche dans l’ordre, le prénom, le nom et l’âge pour toutes
les personnes dont l’âge est supérieur à 25 ans :

mysql> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25;
+---------------+--------------+---+
|Prenom |Nom |Age|
+---------------+--------------+---+
JEAN	DUPONT	28
JEAN-CHRISTOPHE	JACQUENOD	54
CAROLE	MURCIAN	44
JEAN-CHRISTOPHE	DE-LA-RUE	27
PIERRE-DAVID	MARTIN	27
PIERRE	MARTIN	56
JEAN-CHRISTOPHE	DUMOULIN	54
OLIVIER	LABONNE-JAYAT	54
JEAN	DE-LA-FONTAINE	110
SAMUEL	LEVY	56
JEAN	DUPONT	54
+---------------+--------------+---+
11 rows in set (0,00 sec)

Il est possible de combiner plusieurs conditions. Cette syntaxe affiche le prénom,
le nom et l’âge des personnes dont l’âge est supérieur à 25 ans ET ayant comme
prénom JEAN :

mysql> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 AND
Prenom="JEAN";
+------+--------------+---+
|Prenom|Nom |Age|
+------+--------------+---+
JEAN	DUPONT	28
JEAN	DE-LA-FONTAINE	110
JEAN	DUPONT	54
+------+--------------+---+
3 rows in set (0,00 sec)

Cette syntaxe affiche le prénom, le nom et l’âge des personnes dont l’âge est su-
périeur à 25 ans OU ayant comme prénom JEAN :

mysql> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 OR
Prenom="JEAN";
+---------------+--------------+---+

9

|Prenom |Nom |Age|
+---------------+--------------+---+
JEAN	DUPONT	28
JEAN-CHRISTOPHE	JACQUENOD	54
CAROLE	MURCIAN	44
JEAN-CHRISTOPHE	DE-LA-RUE	27
PIERRE-DAVID	MARTIN	27
PIERRE	MARTIN	56
JEAN-CHRISTOPHE	DUMOULIN	54
OLIVIER	LABONNE-JAYAT	54
JEAN	DE-LA-FONTAINE	110
SAMUEL	LEVY	56
JEAN	DUPONT	54
+---------------+--------------+---+
11 rows in set (0,00 sec)

Le tri avec ORDER BY
La syntaxe ORDER BY ordonne les résultats de la requête. Si on désire présenter
le résultat de la requête précédente par ordre croisant de l’âge, la syntaxe devient :

mysql> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 OR
Prenom="JEAN" ORDER BY Age;
+---------------+--------------+---+
|Prenom |Nom |Age|
+---------------+--------------+---+
JEAN-CHRISTOPHE	DE-LA-RUE	27
PIERRE-DAVID	MARTIN	27
JEAN	DUPONT	28
CAROLE	MURCIAN	44
JEAN-CHRISTOPHE	JACQUENOD	54
JEAN-CHRISTOPHE	DUMOULIN	54
OLIVIER	LABONNE-JAYAT	54
JEAN	DUPONT	54
PIERRE	MARTIN	56
SAMUEL	LEVY	56
JEAN	DE-LA-FONTAINE	110
+---------------+--------------+---+
11 rows in set (0,00 sec)

Pour un affichage par ordre décroissant il suffit d’ajouter DESC à la fin de la
syntaxe :

mysql> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 OR
Prenom="JEAN" ORDER BY Age DESC;
+---------------+--------------+---+
|Prenom |Nom |Age|
+---------------+--------------+---+
|JEAN |DE-LA-FONTAINE|110|

10

PIERRE	MARTIN	56
SAMUEL	LEVY	56
JEAN-CHRISTOPHE	JACQUENOD	54
JEAN-CHRISTOPHE	DUMOULIN	54
OLIVIER	LABONNE-JAYAT	54
JEAN	DUPONT	54
CAROLE	MURCIAN	44
JEAN	DUPONT	28
JEAN-CHRISTOPHE	DE-LA-RUE	27
PIERRE-DAVID	MARTIN	27
+---------------+--------------+---+
11 rows in set (0,00 sec)

Pour un tri sur le nom :

mysql> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 OR
Prenom="JEAN" ORDER BY Nom;
+---------------+--------------+---+
|Prenom |Nom |Age|
+---------------+--------------+---+
JEAN	DE-LA-FONTAINE	110
JEAN-CHRISTOPHE	DE-LA-RUE	27
JEAN-CHRISTOPHE	DUMOULIN	54
JEAN	DUPONT	28
JEAN	DUPONT	54
JEAN-CHRISTOPHE	JACQUENOD	54
OLIVIER	LABONNE-JAYAT	54
SAMUEL	LEVY	56
PIERRE-DAVID	MARTIN	27
PIERRE	MARTIN	56
CAROLE	MURCIAN	44
+---------------+--------------+---+
11 rows in set (0,00 sec)

Dans ce dernier cas, le choix de la table de codage des caractères (UTF8) et la
sensibilité à la casse impacte le tri « alphabétique ».

La limitation avec LIMIT
La syntaxe LIMIT ne sélectionne qu’une partie des résultats de la requête. La syn-
taxe générale est :

LIMIT début, nb

Où début est le numéro de l’entrée dans le résultat (0 pour la première entrée),
et nb le nombre d’entrées à sélectionner. Voici quelques exemples de syntaxe :

LIMIT 0,5 : les 5 premières entrée ;

11

LIMIT 5,3 : de la 6ème entrée à la 8ème entrée (3 entrées à
partir de la 6ème)

La syntaxe suivante affiche les 5 premières lignes de la requête précédente :

mysql> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 OR
Prenom="JEAN" ORDER BY Nom LIMIT 0,5;
+---------------+--------------+---+
|Prenom |Nom |Age|
+---------------+--------------+---+
JEAN	DE-LA-FONTAINE	110
JEAN-CHRISTOPHE	DE-LA-RUE	27
JEAN-CHRISTOPHE	DUMOULIN	54
JEAN	DUPONT	28
JEAN	DUPONT	54
+---------------+--------------+---+
5 rows in set (0,00 sec)

Voici les lignes 6 à 8 :

mysql> SELECT Prenom, Nom, Age FROM personnes WHERE Age>25 OR
Prenom="JEAN" ORDER BY Nom LIMIT 5,3;
+---------------+-------------+---+
|Prenom |Nom |Age|
+---------------+-------------+---+
JEAN-CHRISTOPHE	JACQUENOD	54
OLIVIER	LABONNE-JAYAT	54
SAMUEL	LEVY	56
+---------------+-------------+---+
3 rows in set (0,00 sec)

Le filtrage avec HAVING
Cette condition se comporte comme WHERE. La différence est que HAVING
permet de filtrer en utilisant des fonctions comme SUM(), COUNT(), AVG(),
MIN() ou MAX(). Elle s’utilise généralement sur des données regroupées par
GROUP BY. Des exemples de syntaxes sont présentés avec ces fonctions.

Le regroupement avec GROUP BY
Il est possible de regrouper les résultats selon un champ avec GROUP BY. Cette
syntaxe est utilisée avec les fonctions SQL d’agrégations comme AVG(), SUM(),
... Des exemples de syntaxes sont présentés avec ces fonctions.

Les fonctions SQL
Le langage SQL effectue des traitements sur les données via des fonctions. Elles
sont spécifiques aux bases de données et donc très rapides. Nous n’en présentons

12

que quelques-unes, une liste exhaustive des fonctions SQL est disponible à l’URL
http://sql.sh/fonctions.

Remarque
Pour des questions de performance, il faut privilégier une fonction SQL, quand elle existe, à
une fonction ou un traitement équivalent en PHP.

Il y a plusieurs catégories de fonctions :
• Les fonction d’agrégat : Elles effectuent un traitement sur la totalité de la table.

C’est par exemple la somme ou la moyenne d’un champ numérique.
• Les fonctions scalaires : Elles travaillent sur chaque entrée de la table. On y

trouve :
♦ Les fonctions sur les chaînes de caractères, comme la conversion en majus-

cules ou minuscules d’un champ texte ;
♦ Les fonctions mathématiques telles que l’arrondi d’un champ numérique ;
♦ Les fonctions de date et d’heure ;
♦ Les fonctions de chiffrement ;
♦ Diverses fonctions comme le transtypage CAST() ou la conversion CON-

VERT().
Pour cette section, nous utilisons la table « clients » (d’une banque) dont la

structure est présentée sur la figure 10-1.1 et ses enregistrements sur la figure 10-
1.2.

Figure 10-1.1
Structure de la table clients.

13

Figure 10-1.2
Enregistrements de la table clients.

Remarque
Il est illogique de conserver un champ « Age » dès lors qu’il y a un champ
« Date_Naissance ». Cela ne peut que produire des incohérences de données, en plus de
la redondance d’information. Ce champ est maintenu uniquement pour servir de support aux
exemples suivants.

Les fonctions d’agrégat

AVG
La fonction AVG() calcule la moyenne sur un ensemble d’enregistrements. Elle
fournit un résultat sous la forme d’un « champ virtuel » qui n’existe que durant la
requête, et qu’il est préférable de nommer. Pour cet exemple nous utiliserons le
nom « solde_moyen » :

mysql> SELECT AVG(Solde) AS solde_moyen FROM clients;
+------------------+
|solde_moyen |
+------------------+
|1283.3543809652328|
+------------------+
1 row in set (0,00 sec)

La fonction ROUND(), présente le résultat à la deuxième décimale :

mysql> SELECT ROUND(AVG(Solde),2) AS solde_moyen FROM clients;
+-----------+
|solde_moyen|
+-----------+

14

| 1283.35|
+-----------+
1 row in set (0,00 sec)

Avec la syntaxe GROUP BY, il est possible de regrouper le calcul selon un des
champs. Voici la syntaxe précédente présentée selon l’état civil des clients. L’état
civil est également affiché pour connaître le champ utilisé pour le regroupement :

mysql> SELECT Etat_Civil,ROUND(AVG(Solde),2) AS solde_moyen
FROM clients GROUP BY Etat_Civil;
+------------+-----------+
|Etat_Civil |solde_moyen|
+------------+-----------+
Marié	150.22
Célibataire	975.67
Veuf	6774.72
Divorcé	102.21
Décédé	1825.54
+------------+-----------+
5 rows in set (0,00 sec)

Avec la condition HAVING, il est possible de filtrer le résultat. Voici la syntaxe
précédente où seuls les soldes moyens supérieurs à 1000 sont affichés :

mysql> SELECT Etat_Civil,ROUND(AVG(Solde),2) AS solde_moyen
FROM clients GROUP BY Etat_Civil HAVING solde_moyen > 1000;
+----------+-----------+
|Etat_Civil|solde_moyen|
+----------+-----------+
|Veuf | 6774.72|
|Décédé | 1825.54|
+----------+-----------+
2 rows in set (0,00 sec)

COUNT
La fonction COUNT() calcule le nombre d’enregistrement dans une table. Voici le
nombre total de clients :

mysql> SELECT COUNT(*) AS nbclients FROM clients;
+---------+
|nbclients|
+---------+
| 16|
+---------+
1 row in set (0,00 sec)

Voici le nombre total de clients mariés :

mysql> SELECT COUNT(*) AS nbmarié FROM clients WHERE
Etat_Civil='Marié';

15

+--------+
|nbmarié |
+--------+
| 7|
+--------+
1 row in set (0,00 sec)

La syntaxe GROUP BY, permet d’afficher le nombre de clients selon leur Age :

mysql> SELECT Age,COUNT(*) AS nbclients FROM clients GROUP BY
Age;
+---+---------+
|Age|nbclients|
+---+---------+
23	2
24	1
25	4
27	1
44	1
54	4
56	2
110	1
+---+---------+
8 rows in set (0,00 sec)

Avec la condition HAVING, on peut filtrer ce résultat pour n’afficher que le
nombre de clients supérieur à 1 :

mysql> SELECT Age,COUNT(*) AS nbclients FROM clients GROUP BY
Age HAVING COUNT(*)>1;
+---+---------+
|Age|nbclients|
+---+---------+
23	2
25	4
54	4
56	2
+---+---------+
4 rows in set (0,00 sec)

Cette syntaxe est identique à

mysql> SELECT Age,COUNT(*) AS nbclients FROM clients GROUP BY
Age HAVING nbclients>1;

MAX
La fonction MAX() calcule la valeur maximale dans une table. Voici le client
ayant le plus grand solde :

16

mysql> SELECT Nom, ROUND(MAX(Solde),2) AS solde_max FROM
clients;
+------+---------+
|Nom |solde_max|
+------+---------+
|DUPONT| 12314.87|
+------+---------+
1 row in set (0,00 sec)

MIN
La fonction MIN() calcule la valeur minimale dans une table. Voici le client ayant
le plus petit solde :

mysql> SELECT Nom, ROUND(MIN(Solde),2) AS solde_min FROM
clients;
+------+---------+
|Nom |solde_min|
+------+---------+
|DUPONT| -2186.86|
+------+---------+
1 row in set (0,00 sec)

SUM
La fonction SUM() calcule la somme d’un champ numérique. La syntaxe suivante
affiche le solde total de tous les clients :

mysql> SELECT ROUND(SUM(Solde),2) AS solde_total FROM clients;
+-----------+
|solde_total|
+-----------+
| 20533.67|
+-----------+
1 row in set (0,00 sec)

Voici le solde total des clients décédés :

mysql> SELECT ROUND(SUM(Solde),2) AS solde_total FROM clients
WHERE Etat_Civil='Décédé';
+-----------+
|solde_total|
+-----------+
| 1825.54|
+-----------+
1 row in set (0,00 sec)

Voici le solde total des clients selon leur âge :

mysql> SELECT Age,ROUND(SUM(Solde),2) AS solde_total FROM
clients GROUP BY Age;

17

+---+-----------+
|Age|solde_total|
+---+-----------+
23	178.77
24	-203.18
25	2763.47
27	1200.50
44	3548.98
54	9753.16
56	1466.43
110	1825.54
+---+-----------+
8 rows in set (0,00 sec)

Voici le solde total des clients, dépassant 1000, en fonction de leur âge :

mysql> SELECT Age,ROUND(SUM(Solde),2) AS solde_total FROM
clients GROUP BY Age HAVING solde_total>1000;
+---+-----------+
|Age|solde_total|
+---+-----------+
25	2763.47
27	1200.50
44	3548.98
54	9753.16
56	1466.43
110	1825.54
+---+-----------+
6 rows in set (0,00 sec)

Quelques fonctions sur les chaînes de caractères
Les fonctions sur les chaînes de caractères sont nombreuses. Nous n’en présentons
que quelques unes. Une présentation complète est disponible à l’URL
http://sql.sh/fonctions/chaines-de-caracteres.
CONCAT
C’est la concaténation de chaînes de caractères. L’exemple suivant concatène le
« prénom », un espace, et le « nom » dans un seul champ nommé « pre-
nom_nom » :

mysql> SELECT ID, CONCAT(Prenom,' ',Nom) AS prenom_nom,
Date_Naissance FROM clients;
+--+-------------------------+--------------+
|ID|prenom_nom |Date_Naissance|
+--+-------------------------+--------------+
1	JEAN DUPONT	1987-12-28
2	JEAN-CHRISTOPHE JACQUENOD	1961-02-10
3	CAROLE MURCIAN	1970-10-20

18

4	JEAN-MICHEL LERY	1989-05-07
5	JEAN-CHRISTOPHE DE-LA-RUE	1991-06-18
6	PIERRE-DAVID MARTIN	1991-08-22
7	PIERRE MARTIN	1959-01-18
8	FREDERIC JACQUENOD	1989-11-27
9	LAURENCE JACQUENOD	1990-11-01
10	JEAN-CHRISTOPHE DUMOULIN	1960-08-22
11	OLIVIER LABONNE-JAYAT	1960-09-23
12	JEAN DE-LA-FONTAINE	1905-01-22
13	SAMUEL LEVY	1959-03-27
14	LAURENCE DE-LA-RUE	1989-12-13
15	JEAN DUPONT	1960-10-15
16	ALBERT MARTIN	1989-08-15
+--+-------------------------+--------------+
16 rows in set (0,00 sec)

LENGTH
C’est la longueur d’une chaîne de caractères. L’exemple suivant affiche la taille du
champ nom de tous les clients :

mysql> SELECT ID,Nom,LENGTH(Nom) AS Taille_Nom FROM clients;
+--+--------------+----------+
|ID|Nom |Taille_Nom|
+--+--------------+----------+
1	DUPONT	6
2	JACQUENOD	9
3	MURCIAN	7
4	LERY	4
5	DE-LA-RUE	9
6	MARTIN	6
7	MARTIN	6
8	JACQUENOD	9
9	JACQUENOD	9
10	DUMOULIN	8
11	LABONNE-JAYAT	13
12	DE-LA-FONTAINE	14
13	LEVY	4
14	DE-LA-RUE	9
15	DUPONT	6
16	MARTIN	6
+--+--------------+----------+
16 rows in set (0,00 sec)

Cet autre exemple affiche la taille du plus grand nom de la table clients :

mysql> SELECT MAX(LENGTH(Nom)) AS Taille_Max_Nom FROM clients;
+--------------+
|Taille_Max_Nom|
+--------------+

19

| 14|
+--------------+
1 row in set (0,01 sec)

REPLACE
Cette fonction remplace une chaîne par une autre. La syntaxe suivante montre le
résultat du remplacement du texte 'DUPONT' par 'DURAND' dans la colonne
« Nom ». Comme il s’agit d’un SELECT aucun changement n’est effectué.

mysql> SELECT ID,Nom,REPLACE(Nom,'DUPONT','DURAND') as
Nouveau_Nom FROM clients;
+--+--------------+--------------+
|ID|Nom |Nouveau_Nom |
+--+--------------+--------------+
1	DUPONT	DURAND
2	JACQUENOD	JACQUENOD
3	MURCIAN	MURCIAN
4	LERY	LERY
5	DE-LA-RUE	DE-LA-RUE
6	MARTIN	MARTIN
7	MARTIN	MARTIN
8	JACQUENOD	JACQUENOD
9	JACQUENOD	JACQUENOD
10	DUMOULIN	DUMOULIN
11	LABONNE-JAYAT	LABONNE-JAYAT
12	DE-LA-FONTAINE	DE-LA-FONTAINE
13	LEVY	LEVY
14	DE-LA-RUE	DE-LA-RUE
15	DUPONT	DURAND
16	MARTIN	MARTIN
+--+--------------+--------------+
16 rows in set (0,00 sec)

L’exemple montre l’utilisation de REPLACE avec une requête UPDATE, pour
mettre à jour une partie du prénom.

mysql> UPDATE clients SET
Prenom=REPLACE(Prenom,'PIERRE','PAUL') WHERE ID=6;
Query OK, 1 row affected (0,00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

La requête suivante montre le résultat de cette mise à jour du prénom de
l’utilisateur ayant l’ID 6 qui a été changé de 'PIERRE-DAVID' en 'PAUL-DAVID'.

mysql> SELECT ID,Nom,Prenom FROM clients;
+--+--------------+---------------+
|ID|Nom |Prenom |
+--+--------------+---------------+
| 1|DUPONT |JEAN |

20

2	JACQUENOD	JEAN-CHRISTOPHE
3	MURCIAN	CAROLE
4	LERY	JEAN-MICHEL
5	DE-LA-RUE	JEAN-CHRISTOPHE
6	MARTIN	PAUL-DAVID
7	MARTIN	PIERRE
8	JACQUENOD	FREDERIC
9	JACQUENOD	LAURENCE
10	DUMOULIN	JEAN-CHRISTOPHE
11	LABONNE-JAYAT	OLIVIER
12	DE-LA-FONTAINE	JEAN
13	LEVY	SAMUEL
14	DE-LA-RUE	LAURENCE
15	DUPONT	JEAN
16	MARTIN	ALBERT
+--+------------------------------+
16 rows in set (0,00 sec)

SUBSTRING
La fonction SUBSTRING retourne une partie de la chaîne indiqué. Elle possède
plusieurs syntaxes :
• SUBSTRING(chaine,debut) : Retourne la chaîne à partir de début ;
• SUBSTRING(chaine FROM debut) : Retourne la chaîne à partir de début ;
• SUBSTRING(chaine,debut,longueur) : Retourne la chaîne à partir de début sur

longueur caractères ;
• SUBSTRING(chaine FROM debut FOR longueur) : Retourne la chaîne à partir

de début sur longueur caractères ;
L’exemple suivant affiche les quatre premiers caractères du prénom dans une

nouvelle colonne.

mysql> SELECT ID,Nom,Prenom,SUBSTRING(Prenom,1,4) as
Prem_4_Caract FROM clients;
+--+--------------+---------------+-------------+
|ID|Nom |Prenom |Prem_4_Caract|
+--+--------------+---------------+-------------+
1	DUPONT	JEAN	JEAN
2	JACQUENOD	JEAN-CHRISTOPHE	JEAN
3	MURCIAN	CAROLE	CARO
4	LERY	JEAN-MICHEL	JEAN
5	DE-LA-RUE	JEAN-CHRISTOPHE	JEAN
6	MARTIN	PAUL-DAVID	PAUL
7	MARTIN	PIERRE	PIER
8	JACQUENOD	FREDERIC	FRED
9	JACQUENOD	LAURENCE	LAUR
10	DUMOULIN	JEAN-CHRISTOPHE	JEAN
11	LABONNE-JAYAT	OLIVIER	OLIV
12	DE-LA-FONTAINE	JEAN	JEAN

21

13	LEVY	SAMUEL	SAMU
14	DE-LA-RUE	LAURENCE	LAUR
15	DUPONT	JEAN	JEAN
16	MARTIN	ALBERT	ALBE
+--+--------------+---------------+-------------+
16 rows in set (0,00 sec)

LEFT
La fonction LEFT retourne les N caractères de gauche (premiers). L’affichage pré-
cèdent aurait pu être obtenu par la syntaxe :

mysql> SELECT ID,Nom,Prenom,LEFT(Prenom,4) as Prem_4_Caract
FROM clients;

RIGHT
La fonction RIGHT retourne les N caractères de droite (derniers). L’exemple sui-
vant affiche les quatre derniers caractères du prénom dans une nouvelle colonne.

mysql> SELECT ID,Nom,Prenom,RIGHT(Prenom,4) as Dern_4_Caract
FROM clients;
+--+--------------+---------------+-------------+
|ID|Nom |Prenom |Dern_4_Caract|
+--+--------------+---------------+-------------+
1	DUPONT	JEAN	JEAN
2	JACQUENOD	JEAN-CHRISTOPHE	OPHE
3	MURCIAN	CAROLE	ROLE
4	LERY	JEAN-MICHEL	CHEL
5	DE-LA-RUE	JEAN-CHRISTOPHE	OPHE
6	MARTIN	PAUL-DAVID	AVID
7	MARTIN	PIERRE	ERRE
8	JACQUENOD	FREDERIC	ERIC
9	JACQUENOD	LAURENCE	ENCE
10	DUMOULIN	JEAN-CHRISTOPHE	OPHE
11	LABONNE-JAYAT	OLIVIER	VIER
12	DE-LA-FONTAINE	JEAN	JEAN
13	LEVY	SAMUEL	MUEL
14	DE-LA-RUE	LAURENCE	ENCE
15	DUPONT	JEAN	JEAN
16	MARTIN	ALBERT	BERT
+--+--------------+---------------+-------------+
16 rows in set (0,00 sec)

REVERSE
La fonction REVERSE renverse l’ordre des caractères d’une chaîne. Voici un
exemple d’inversion des lettres du prénom :

mysql> SELECT ID,Nom,Prenom,REVERSE(Prenom) as Prenom_retourné
FROM clients;

22

+--+--------------+---------------+----------------+
|ID|Nom |Prenom |Prenom_retourné |
+--+--------------+---------------+----------------+
1	DUPONT	JEAN	NAEJ
2	JACQUENOD	JEAN-CHRISTOPHE	EHPOTSIRHC-NAEJ
3	MURCIAN	CAROLE	ELORAC
4	LERY	JEAN-MICHEL	LEHCIM-NAEJ
5	DE-LA-RUE	JEAN-CHRISTOPHE	EHPOTSIRHC-NAEJ
6	MARTIN	PAUL-DAVID	DIVAD-LUAP
7	MARTIN	PIERRE	ERREIP
8	JACQUENOD	FREDERIC	CIREDERF
9	JACQUENOD	LAURENCE	ECNERUAL
10	DUMOULIN	JEAN-CHRISTOPHE	EHPOTSIRHC-NAEJ
11	LABONNE-JAYAT	OLIVIER	REIVILO
12	DE-LA-FONTAINE	JEAN	NAEJ
13	LEVY	SAMUEL	LEUMAS
14	DE-LA-RUE	LAURENCE	ECNERUAL
15	DUPONT	JEAN	NAEJ
16	MARTIN	ALBERT	TREBLA
+--+--------------+---------------+----------------+
16 rows in set (0,00 sec)

TRIM, LTRIM, RTRIM
La fonction TRIM supprime les caractères invisibles (espaces, tabulations, retour à
la ligne) au début et en fin de chaîne. En voici un exemple :

mysql> SELECT ID,Nom,Prenom,TRIM(Prenom) as Prenom_nettoyé
FROM clients;

La fonction LTRIM applique ce traitement à gauche (début) de la chaîne. La
fonction RTRIM applique ce traitement à droite (fin) de la chaîne.
LPAD, RPAD
La fonction LPAD complète une chaîne de caractère jusqu’à atteindre la taille de-
mandée en ajoutant des caractères en début de chaîne (à gauche). En voici un
exemple :

mysql> SELECT ID,Nom,Prenom,LPAD(Prenom,14,'_') as
Prenom_complété FROM clients;
+--+--------------+---------------+-----------------+
|ID|Nom |Prenom |Prenom_complété |
+--+--------------+---------------+-----------------+
1	DUPONT	JEAN	__________JEAN
2	JACQUENOD	JEAN-CHRISTOPHE	JEAN-CHRISTOPH
3	MURCIAN	CAROLE	________CAROLE
4	LERY	JEAN-MICHEL	___JEAN-MICHEL
5	DE-LA-RUE	JEAN-CHRISTOPHE	JEAN-CHRISTOPH
6	MARTIN	PAUL-DAVID	____PAUL-DAVID
7	MARTIN	PIERRE	________PIERRE

23

8	JACQUENOD	FREDERIC	______FREDERIC
9	JACQUENOD	LAURENCE	______LAURENCE
10	DUMOULIN	JEAN-CHRISTOPHE	JEAN-CHRISTOPH
11	LABONNE-JAYAT	OLIVIER	_______OLIVIER
12	DE-LA-FONTAINE	JEAN	__________JEAN
13	LEVY	SAMUEL	________SAMUEL
14	DE-LA-RUE	LAURENCE	______LAURENCE
15	DUPONT	JEAN	__________JEAN
16	MARTIN	ALBERT	________ALBERT
+--+--------------+---------------+-----------------+
16 rows in set (0,00 sec)

La fonction RPAD effectue le même traitement en ajoutant le caractère de rem-
plissage à droite.
LOWER, LCASE
Cette fonction convertit une chaîne en minuscules. LCASE est un alias de LO-
WER. En voici un exemple :

mysql> SELECT ID,LOWER(Nom),Prenom FROM clients;
+--+--------------+---------------+
|ID|LOWER(Nom) |Prenom |
+--+--------------+---------------+
1	dupont	JEAN
2	jacquenod	JEAN-CHRISTOPHE
3	murcian	CAROLE
4	lery	JEAN-MICHEL
5	de-la-rue	JEAN-CHRISTOPHE
6	martin	PAUL-DAVID
7	martin	PIERRE
8	jacquenod	FREDERIC
9	jacquenod	LAURENCE
10	dumoulin	JEAN-CHRISTOPHE
11	labonne-jayat	OLIVIER
12	de-la-fontaine	JEAN
13	levy	SAMUEL
14	de-la-rue	LAURENCE
15	dupont	JEAN
16	martin	ALBERT
+--+--------------+---------------+
16 rows in set (0,00 sec)

UPPER, UCASE
Cette fonction convertit une chaîne en majuscules. UCASE est un alias de UPPER.
En voici un exemple :

mysql> SELECT ID,Nom,Prenom,UPPER(Etat_Civil) FROM clients;
+--+--------------+---------------+-----------------+
|ID|Nom |Prenom |UPPER(Etat_Civil)|

24

+--+--------------+---------------+-----------------+
1	DUPONT	JEAN	MARIÉ
2	JACQUENOD	JEAN-CHRISTOPHE	MARIÉ
3	MURCIAN	CAROLE	CÉLIBATAIRE
4	LERY	JEAN-MICHEL	MARIÉ
5	DE-LA-RUE	JEAN-CHRISTOPHE	DIVORCÉ
6	MARTIN	PAUL-DAVID	CÉLIBATAIRE
7	MARTIN	PIERRE	VEUF
8	JACQUENOD	FREDERIC	MARIÉ
9	JACQUENOD	LAURENCE	MARIÉ
10	DUMOULIN	JEAN-CHRISTOPHE	MARIÉ
11	LABONNE-JAYAT	OLIVIER	CÉLIBATAIRE
12	DE-LA-FONTAINE	JEAN	DÉCÉDÉ
13	LEVY	SAMUEL	DIVORCÉ
14	DE-LA-RUE	LAURENCE	MARIÉ
15	DUPONT	JEAN	VEUF
16	MARTIN	ALBERT	CÉLIBATAIRE
+--+--------------+---------------+-----------------+
16 rows in set (0,00 sec)

LOCATE, INSTR
La fonction LOCATE indique la position d’une sous-chaîne dans une chaîne. Cet
exemple affiche la position du caractère 'C' dans le prénom :

mysql> SELECT ID,Nom,Prenom,LOCATE('C',Prenom) FROM clients;
+--+--------------+---------------+------------------+
|ID|Nom |Prenom |LOCATE('C',Prenom)|
+--+--------------+---------------+------------------+
1	DUPONT	JEAN	0
2	JACQUENOD	JEAN-CHRISTOPHE	6
3	MURCIAN	CAROLE	1
4	LERY	JEAN-MICHEL	8
5	DE-LA-RUE	JEAN-CHRISTOPHE	6
6	MARTIN	PAUL-DAVID	0
7	MARTIN	PIERRE	0
8	JACQUENOD	FREDERIC	8
9	JACQUENOD	LAURENCE	7
10	DUMOULIN	JEAN-CHRISTOPHE	6
11	LABONNE-JAYAT	OLIVIER	0
12	DE-LA-FONTAINE	JEAN	0
13	LEVY	SAMUEL	0
14	DE-LA-RUE	LAURENCE	7
15	DUPONT	JEAN	0
16	MARTIN	ALBERT	0
+--+--------------+---------------+------------------+
16 rows in set (0,00 sec)

25

La fonction INSTR est identique. Elle retourne la même information, mais les
arguments sont inversés. Le résultat précédent peut être obtenu avec :

mysql> SELECT ID,Nom,Prenom,INSTR(Prenom,'C') FROM clients;

Les fonctions mathématiques
Il existe beaucoup de fonctions mathématiques comme CONV(), ABS(), PO-
WER(), SQRT(), TRUNCATE(), ROUND() …, nous n’en présentons que deux.
TRUNCATE
Cette fonction tronque un nombre réel à la décimale indiquée. En voici un
exemple :

mysql> SELECT ID,Nom,Prenom,TRUNCATE(Solde,0) AS Solde_Entier
FROM clients;
---+--------------+---------------+------------+
|ID|Nom |Prenom |Solde_Entier|
+--+--------------+---------------+------------+
1	DUPONT	JEAN	1200
2	JACQUENOD	JEAN-CHRISTOPHE	-308
3	MURCIAN	CAROLE	3548
4	LERY	JEAN-MICHEL	-18
5	DE-LA-RUE	JEAN-CHRISTOPHE	-27
6	MARTIN	PAUL-DAVID	206
7	MARTIN	PIERRE	1234
8	JACQUENOD	FREDERIC	432
9	JACQUENOD	LAURENCE	-203
10	DUMOULIN	JEAN-CHRISTOPHE	-2186
11	LABONNE-JAYAT	OLIVIER	-65
12	DE-LA-FONTAINE	JEAN	1825
13	LEVY	SAMUEL	231
14	DE-LA-RUE	LAURENCE	2135
15	DUPONT	JEAN	12314
16	MARTIN	ALBERT	213
+--+--------------+---------------+------------+
16 rows in set (0,00 sec)

ROUND
Cette fonction arrondit un nombre réel à la décimale indiquée. En voici un
exemple :

mysql> SELECT ID,Nom,Prenom,ROUND(Solde,0) AS Solde_Entier
FROM clients;
+--+--------------+---------------+------------+
|ID|Nom |Prenom |Solde_Entier|
+--+--------------+---------------+------------+
1	DUPONT	JEAN	1200
2	JACQUENOD	JEAN-CHRISTOPHE	-309
3	MURCIAN	CAROLE	3549

26

4	LERY	JEAN-MICHEL	-19
5	DE-LA-RUE	JEAN-CHRISTOPHE	-27
6	MARTIN	PAUL-DAVID	206
7	MARTIN	PIERRE	1235
8	JACQUENOD	FREDERIC	433
9	JACQUENOD	LAURENCE	-203
10	DUMOULIN	JEAN-CHRISTOPHE	-2187
11	LABONNE-JAYAT	OLIVIER	-66
12	DE-LA-FONTAINE	JEAN	1826
13	LEVY	SAMUEL	232
14	DE-LA-RUE	LAURENCE	2136
15	DUPONT	JEAN	12315
16	MARTIN	ALBERT	213
+--+--------------+---------------+------------+
16 rows in set (0,00 sec)

Les dates en SQL

Les types de dates et d’heures
Dans la structure de la table clients présentée précédemment, nous avons utilisé un
champ « Date_Naissance » de type DATE. Il existe en SQL plusieurs types con-
cernant les dates et heures. En voici une synthèse :
• DATE : La date est stockée au format AAAA-MM-JJ (Année-Jour-Mois) ;
• TIME : L’heure est stockée au format HH:MM:SS (Heures:Minutes:Secondes) ;
• DATETIME : La date et l’heure sont stockées au format AAAA-MM-JJ

HH:MM:SS ;
• DATETIME : La date et l’heure sont stockées au format

AAAAMMJJHHMMSS ;
• YEAR : L’année est stockée au format AAAA ;

Sélection des enregistrements selon une date
La requête suivante affiche tous les clients dont la date de naissance est postérieure
au 1er janvier 1970 ;

mysql> SELECT ID,Nom,Prenom,Date_Naissance FROM clients WHERE
Date_Naissance >= '1970-01-01';
+--+---------+---------------+--------------+
|ID|Nom |Prenom |Date_Naissance|
+--+---------+---------------+--------------+
1	DUPONT	JEAN	1987-12-28
3	MURCIAN	CAROLE	1970-10-20
4	LERY	JEAN-MICHEL	1989-05-07
5	DE-LA-RUE	JEAN-CHRISTOPHE	1991-06-18
6	MARTIN	PAUL-DAVID	1991-08-22
8	JACQUENOD	FREDERIC	1989-11-27

27

9	JACQUENOD	LAURENCE	1990-11-01
14	DE-LA-RUE	LAURENCE	1989-12-13
16	MARTIN	ALBERT	1989-08-15
+--+---------+---------------+--------------+
9 rows in set (0,00 sec)

Cette autre requête affiche les clients née entre le 1er janvier 1970 et le 31 dé-
cembre 1989 ;

mysql> SELECT ID,Nom,Prenom,Date_Naissance FROM clients WHERE
Date_Naissance BETWEEN '1970-01-01' AND '1989-12-31';
+--+---------+-----------+--------------+
|ID|Nom |Prenom |Date_Naissance|
+--+---------+-----------+--------------+
1	DUPONT	JEAN	1987-12-28
3	MURCIAN	CAROLE	1970-10-20
4	LERY	JEAN-MICHEL	1989-05-07
8	JACQUENOD	FREDERIC	1989-11-27
14	DE-LA-RUE	LAURENCE	1989-12-13
16	MARTIN	ALBERT	1989-08-15
+--+---------+-----------+--------------+
6 rows in set (0,00 sec)

Les fonctions de dates et d’heures
Nous présentons dans cette section quelques fonctions de gestion des dates et
heures en SQL. Une liste exhaustive est présentée à l’URL
http://sql.sh/fonctions/date-heure
NOW, CURDATE, CURTIME
La fonction NOW() retourne la date actuelle au format AAAA-MM-JJ
HH:MM:SS. La fonction CURDATE() retourne la date actuelle au format AAAA-
MM-JJ. La fonction CURTIME() retourne la date actuelle au format HH:MM:SS.
Un exemple d’utilisation de la fonction NOW() est présenté avec la fonction
DATEDIFF().
DAY, MONTH, YEAR
Les fonctions DAY(), MONTH() et YEAR() retournent respectivement le jour, le
mois et l’année d’une date. La requête suivante affiche l’année de naissance des
clients :

mysql> SELECT ID,Nom,Prenom,YEAR(Date_Naissance) AS
Année_Naissance FROM clients;
+--+--------------+---------------+----------------+
|ID|Nom |Prenom |Année_Naissance |
+--+--------------+---------------+----------------+
1	DUPONT	JEAN	1987
2	JACQUENOD	JEAN-CHRISTOPHE	1961
3	MURCIAN	CAROLE	1970

28

4	LERY	JEAN-MICHEL	1989
5	DE-LA-RUE	JEAN-CHRISTOPHE	1991
6	MARTIN	PAUL-DAVID	1991
7	MARTIN	PIERRE	1959
8	JACQUENOD	FREDERIC	1989
9	JACQUENOD	LAURENCE	1990
10	DUMOULIN	JEAN-CHRISTOPHE	1960
11	LABONNE-JAYAT	OLIVIER	1960
12	DE-LA-FONTAINE	JEAN	1905
13	LEVY	SAMUEL	1959
14	DE-LA-RUE	LAURENCE	1989
15	DUPONT	JEAN	1960
16	MARTIN	ALBERT	1989
+--+--------------+---------------+----------------+
16 rows in set (0,01 sec)

DATE_FORMAT
Cette fonction présente la date et l’heure selon le format indiqué. En voici un
exemple :

mysql> SELECT
ID,Nom,Prenom,DATE_FORMAT(Date_Naissance,'%d/%m/%Y') AS
Naissance FROM clients;
+--+--------------+---------------+----------+
|ID|Nom |Prenom |Naissance |
+--+--------------+---------------+----------+
1	DUPONT	JEAN	28/12/1987
2	JACQUENOD	JEAN-CHRISTOPHE	10/02/1961
3	MURCIAN	CAROLE	20/10/1970
4	LERY	JEAN-MICHEL	07/05/1989
5	DE-LA-RUE	JEAN-CHRISTOPHE	18/06/1991
6	MARTIN	PIERRE-DAVID	22/08/1991
7	MARTIN	PIERRE	18/01/1959
8	JACQUENOD	FREDERIC	27/11/1989
9	JACQUENOD	LAURENCE	01/11/1990
10	DUMOULIN	JEAN-CHRISTOPHE	22/08/1960
11	LABONNE-JAYAT	OLIVIER	23/09/1960
12	DE-LA-FONTAINE	JEAN	22/01/1905
13	LEVY	SAMUEL	27/03/1959
14	DE-LA-RUE	LAURENCE	13/12/1989
15	DUPONT	JEAN	15/10/1960
16	MARTIN	ALBERT	15/08/1989
+--+--------------+---------------+----------+
16 rows in set (0,00 sec)

Parmi les nombreux formats, le format « %d/%m/%Y » présente la date au for-
mat JJ/MM/AAAA. Pour l’heure, un format tel que « %Hh%imin%ssec » retourne-
rait 23h54min34sec.

29

DATEDIFF
Cette fonction calcule le nombre de jours entre deux dates. Ainsi la syntaxe
DATEDIFF(NOW(),Date_Naissance) donne l’âge de la personne en nombre de
jours. Si on divise le résultat par 365, et qu’on prenne la partie entière, alors on
obtient l’âge de la personne (en années). Voici cette syntaxe :

mysql> SELECT
ID,Nom,Prenom,Age,TRUNCATE((DATEDIFF(NOW(),Date_Naissance)/365
),0) AS Age_calculé FROM clients;
+--+--------------+---------------+---+------------+
|ID|Nom |Prenom |Age|Age_calculé |
+--+--------------+---------------+---+------------+
1	DUPONT	JEAN	27	27
2	JACQUENOD	JEAN-CHRISTOPHE	54	54
3	MURCIAN	CAROLE	44	44
4	LERY	JEAN-MICHEL	25	25
5	DE-LA-RUE	JEAN-CHRISTOPHE	23	23
6	MARTIN	PAUL-DAVID	23	23
7	MARTIN	PIERRE	56	56
8	JACQUENOD	FREDERIC	25	25
9	JACQUENOD	LAURENCE	24	24
10	DUMOULIN	JEAN-CHRISTOPHE	54	54
11	LABONNE-JAYAT	OLIVIER	54	54
12	DE-LA-FONTAINE	JEAN	110	110
13	LEVY	SAMUEL	56	56
14	DE-LA-RUE	LAURENCE	25	25
15	DUPONT	JEAN	54	54
16	MARTIN	ALBERT	25	25
+--+--------------+---------------+---+------------+
16 rows in set (0,00 sec)

Remarque
Ce calcul montre qu’il est inutile de conserver une colonne « Age », puisqu’il peut être dé-
duit de la date de naissance. C’est même une erreur, car l’âge change selon la date du
moment, seule la date de naissance est immuable dans le temps. Seule la date de nais-
sance doit être présente dans la table clients.

Les fonctions MySQL d’information
MySQL propose quelques fonctions retournant des informations sur les dernières
opérations, sur les bases de données ou les tables.

Information sur MySQL, les utilisateurs et la base de données

VERSION

30

Cette fonction retourne une chaîne de caractère UTF8 indiquant la version de
MySQL. En voici un exemple :

mysql> SELECT VERSION();
+---------+
|VERSION()|
+---------+
|5.6.21 |
+---------+
1 row in set (0,00 sec)

USER, SYSTEM_USER, SESSION_USER
Cette fonction retourne une chaîne de caractère UTF8 indiquant quel est
l’utilisateur et le nom de l’ordinateur client utilisé pour la connexion. USER(),
SYSTEM_USER() ou SESSION_USER() sont des synonymes. En voici un
exemple :

mysql> SELECT USER();
+--------------+
|USER() |
+--------------+
|root@localhost|
+--------------+
1 row in set (0,01 sec)

CURRENT_USER
Cette fonction retourne une chaîne de caractère UTF8 indiquant quels sont
l’utilisateur et le nom de l’ordinateur que le serveur utilise pour identifier le client.
La valeur peut être différente de USER().
SCHEMA, DATABASE
Cette fonction retourne une chaîne de caractère UTF8 indiquant la base de données
courante ou NULL si aucune base de données n’est utilisée. SCHEMA() ou DA-
TABASE() sont des synonymes. En voici un exemple :

mysql > SELECT DATABASE();
+----------+
|DATABASE()|
+----------+
|coursphp |
+----------+
1 row in set (0,00 sec)

CONNECTION_ID
Cette fonction retourne un numéro entier, identifiant unique de connexion. En voici
un exemple :

mysql> SELECT CONNECTION_ID();
+---------------+

31

|CONNECTION_ID()|
+---------------+
| 1|
+---------------+
1 row in set (0,00 sec)

BENCHMARK
Cette fonction exécute « nb » fois le traitement « expression ». Elle évalue la per-
formance de MySQL. En voici un exemple :

mysql> SELECT BENCHMARK(1000000,ENCODE('bonjour','au
revoir'));
+--+
|BENCHMARK(1000000,ENCODE('bonjour','au revoir'))|
+--+
| 0|
+--+
1 row in set (0,13 sec)

CHARSET
Cette fonction indique le jeu de caractères utilisé par l’argument. Appliquée sur un
texte sans accents, elle affiche la table par défaut. En voici deux exemples :

mysql> SELECT CHARSET('bonjour');
+------------------+
|CHARSET('bonjour')|
+------------------+
|utf8 |
+------------------+
1 row in set (0,00 sec)

mysql> SELECT CHARSET(CONVERT('bonjour' USING latin1));
+--+
|CHARSET(CONVERT('bonjour' USING latin1))|
+--+
|latin1 |
+--+
1 row in set (0,00 sec)

COERCIBILITY
Cette fonction indique la coercibilité de la chaîne en argument. Cela définit quel
jeu de caractères serait utilisé en cas de regroupement de deux résultats comme par
exemple avec la clause UNION. La valeur de coercibilité la plus faible sera utilisée
comme référence, et son jeu de caractères sera prioritaire pour la conversion du
résultat final. Les valeurs retournées sont :
• 0 : Le jeu de caractères est défini explicitement, via une clause COLLATE ;

32

• 1 : Aucun jeu de caractères à utiliser en particulier. Les chaînes sont concaténées
avec différents jeux de caractères ;

• 2 : Le jeu de caractères est implicite, il est défini par la valeur de la colonne ;
• 3 : Si l’argument est une constante système. Par exemple avec la fonction

USER() ;
• 4 : Dans le cas d’une chaîne littérale ;
• 5 : À ignorer. Par exemple avec une valeur comme NULL.

En voici des exemples :

mysql> SELECT COERCIBILITY('bonjour');
+-----------------------+
|COERCIBILITY('bonjour')|
+-----------------------+
| 4|
+-----------------------+
1 row in set (0,00 sec)

mysql> SELECT COERCIBILITY(USER());
+--------------------+
|COERCIBILITY(USER())|
+--------------------+
| 3|
+--------------------+
1 row in set (0,00 sec)

mysql> SELECT COERCIBILITY('bonjour' COLLATE utf8_general_ci);
+---+
|COERCIBILITY('bonjour' COLLATE utf8_general_ci)|
+---+
| 0|
+---+
1 row in set (0,00 sec)

COLLATION
Cette fonction indique le jeu de caractères (collation) utilisé pour la chaîne en ar-
gument. La clause SQL COLLATE redéfinit ponctuellement le jeu de caractères
(collation) à utiliser par exemple pour une comparaison. En voici des exemples :

mysql> SELECT Nom COLLATE utf8_spanish_ci AS Nom1 FROM
personnes ORDER BY Nom1;
+--------------+
|Nom1 |
+--------------+
|DE-LA-FONTAINE|
|DE-LA-RUE |
|DE-LA-RUE |
|DUMONTEL |
|DUMOULIN |

33

|DUPONT |
|DUPONT |
|JACQUENOD |
|JACQUENOD |
|JACQUENOD |
|KACZMA |
|LABONNE-JAYAT |
|LERY |
|LEVY |
|MARTIN |
|MARTIN |
|MARTIN |
|MURCIAN |
+--------------+
18 rows in set (0,01 sec)
mysql> SELECT COLLATION('bonjour');
+--------------------+
|COLLATION('bonjour')|
+--------------------+
|utf8_general_ci |
+--------------------+
1 row in set (0,00 sec)

mysql> SELECT COLLATION(_latin1'bonjour');
+---------------------------+
|COLLATION(_latin1'bonjour')|
+---------------------------+
|latin1_swedish_ci |
+---------------------------+
1 row in set (0,00 sec)

Information sur les dernières opérations

FOUND_ROWS
Cette fonction retourne un entier correspondant au nombre de lignes trouvées dans
la requête SELECT précédente avec l’option SQL_CAL_FOUND_ROWS. En
voici un exemple :

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM personnes WHERE Age >
40 LIMIT 10;
+--+--------------+---------------+---+
|ID|Nom |Prenom |Age|
+--+--------------+---------------+---+
2	JACQUENOD	JEAN-CHRISTOPHE	54
3	MURCIAN	CAROLE	44
7	MARTIN	PIERRE	56
10	DUMOULIN	JEAN-CHRISTOPHE	54
11	LABONNE-JAYAT	OLIVIER	54

34

12	DE-LA-FONTAINE	JEAN	110
13	LEVY	SAMUEL	56
15	DUPONT	JEAN	54
+--+--------------+---------------+---+
8 rows in set (0,00 sec)

mysql> SELECT FOUND_ROWS();
+------------+
|FOUND_ROWS()|
+------------+
| 8|
+------------+
1 row in set (0,00 sec)

ROWS_COUNT
Cette fonction retourne un entier correspondant au nombre de lignes changées,
supprimées ou insérées par la dernière instruction UPDATE, DELETE ou IN-
SERT. En voici un exemple :

mysql> UPDATE comptes_bancaires SET Solde=Solde-100 WHERE
Solde>200;
Query OK, 23 rows affected (0,00 sec)
Rows matched: 23 Changed: 23 Warnings: 0

mysql> SELECT ROW_COUNT();
+-----------+
|ROW_COUNT()|
+-----------+
| 23|
+-----------+
1 row in set (0,00 sec)

LAST_INSERT_ID
Cette fonction retourne le numéro du premier indice AUTOINCREMENT utilisé
lors de la dernière insertion de donnée. En voici un exemple :

mysql> SELECT * FROM personnes;
+--+--------------+---------------+---+
|ID|Nom |Prenom |Age|
+--+--------------+---------------+---+
1	DUPONT	JEAN	28
2	JACQUENOD	JEAN-CHRISTOPHE	54
3	MURCIAN	CAROLE	44
4	LERY	JEAN-MICHEL	25
5	DE-LA-RUE	JEAN-CHRISTOPHE	27
6	MARTIN	PIERRE-DAVID	27
7	MARTIN	PIERRE	56
8	JACQUENOD	FREDERIC	25

35

9	JACQUENOD	LAURENCE	24
10	DUMOULIN	JEAN-CHRISTOPHE	54
11	LABONNE-JAYAT	OLIVIER	54
12	DE-LA-FONTAINE	JEAN	110
13	LEVY	SAMUEL	56
14	DE-LA-RUE	LAURENCE	25
15	DUPONT	JEAN	54
16	MARTIN	ALBERT	25
+--+--------------+---------------+---+
16 rows in set (0,00 sec)

mysql> INSERT INTO personnes (Nom,Prenom,Age) VALUES
('KACZMA','HELENE',52),('DUMONTEL','FRANCK',23);
Query OK, 2 rows affected (0,00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT LAST_INSERT_ID();
+----------------+
|LAST_INSERT_ID()|
+----------------+
| 17|
+----------------+
1 row in set (0,00 sec)

mysql> SELECT * FROM personnes;
+--+--------------+---------------+---+
|ID|Nom |Prenom |Age|
+--+--------------+---------------+---+
1	DUPONT	JEAN	28
2	JACQUENOD	JEAN-CHRISTOPHE	54
3	MURCIAN	CAROLE	44
4	LERY	JEAN-MICHEL	25
5	DE-LA-RUE	JEAN-CHRISTOPHE	27
6	MARTIN	PIERRE-DAVID	27
7	MARTIN	PIERRE	56
8	JACQUENOD	FREDERIC	25
9	JACQUENOD	LAURENCE	24
10	DUMOULIN	JEAN-CHRISTOPHE	54
11	LABONNE-JAYAT	OLIVIER	54
12	DE-LA-FONTAINE	JEAN	110
13	LEVY	SAMUEL	56
14	DE-LA-RUE	LAURENCE	25
15	DUPONT	JEAN	54
16	MARTIN	ALBERT	25
17	KACZMA	HELENE	52
18	DUMONTEL	FRANCK	23
+--+--------------+---------------+---+
18 rows in set (0,00 sec)

36

Les jointures entre tables
Le langage SQL permet la mise en relation de tables via un champ commun à tra-
vers la jointure. Pour sa mise en œuvre, nous modifions la table des clients d’une
banque, utilisée précédemment, afin que le solde des comptes bancaires soit calculé
à partir d’une autre table de comptes des clients.

Les tables support
Voici la nouvelle structure des tables utilisées pour cette section. Deux tables sont
créées : « clients_bancaires » et « comptes_bancaires ».

mysql> SHOW TABLES;
+------------------+
|Tables_in_coursphp|
+------------------+
|clients |
|clients_bancaires |
|comptes_bancaires |
|personnes |
+------------------+
4 rows in set (0,00 sec)

La table « clients_bancaires »
La table « clients_bancaires » contient la liste des clients de la banque. Elle est
créée à partir de la table « clients » après avoir supprimé les colonnes « Age » et
« Solde ». Sa structure est présentée à la figure 10-1.3 et ses enregistrements à la
figure 10-1.4.

Figure 10-1.3
Structure de la table clients_bancaires.

37

Figure 10-1.4
Enregistrements de la table clients_bancaires.

La table « comptes_bancaires »
La table « comptes_bancaires » contient les champs suivants :
1. ID_Cpt : Un identifiant unique interne du compte ;
2. Agence : Le code de l’agence bancaire, sur 5 caractères alphanumériques ;
3. Numero : Le numéro du compte bancaire, sur 7 caractères alphanumériques ;
4. Type : le type du compte : liste de type comme Compte_Dépôts, Livret_A, …
5. Libelle : Le libellé du compte ;
6. ID_Clt : L’identifiant du client dans la table « clients_bancaires » ;
7. Solde : Le solde restant sur ce compte bancaire.

Remarque
Le numéro de compte devrait être unique. Cependant, pour une présentation qui différencie
le solde actuel avec le solde potentiel, la carte bancaire à débit différée est présentée à part
du compte, mais possède le même numéro de compte. L’unicité du numéro de compte n’est
donc pas possible avec cette modélisation.

La figure 10-1.5 présente sa structure, et la figure 10-1.6, une partie de ses enre-
gistrements.

38

Figure 10-1.5
Structure de la table comptes_bancaires.

Figure 10-1.6
Enregistrements de la table comptes_bancaires.

Voici l’ensemble de ses enregistrements. Certains libellés ont été modifiés ou

tronqués pour une meilleure lisibilité.

mysql> SELECT * FROM comptes_bancaires;
+---+-----+-------+--------------+--------------+---+--------+
|ID_|Agenc|Numero |Type |Libelle |ID_|Solde |
|Cpt|e | | | |Clt| |
+---+-----+-------+--------------+--------------+---+--------+
1	00602	165143P	Compte_Dépôts	Compte de dépô	1	550.98
2	00602	165143P	Carte_Différé	Carte débit di	1	-115.8
3	00602	116476Q	Livret_A	Livret A	1	765.32
4	00523	025123R	Compte_Dépôts	Compte de dépô	2	-140.17
5	00523	025123R	Carte_Différé	Carte débit di	2	-200
6	00523	790327V	Livret_Banque	Compte sur Liv	2	31.3
7	00602	154123P	Compte_Dépôts	Compte de dépô	3	3185.08

39

8	00602	154123P	Carte_Différé	Carte débit di	3	-104.1
9	00602	102476Q	Livret_A	Livret A	3	120
10	00602	921029R	Livret_Banque	Compte sur Liv	3	50
11	00602	413621M	Livret_Jeune	Livret Jeune	3	298
12	00521	032154P	Compte_Dépôts	Compte de dépô	4	-688.98
13	00521	139390R	Livret_Banque	Compte sur Liv	4	50
14	00521	321747M	Livret_Jeune	Livret Jeune	4	500
15	00521	002551B	Livret_Dév_Dur	Livret Dév.Dur	4	120
16	00523	123456J	Compte_Dépôts	Compte de dépô	5	94.68
17	00523	123456J	Carte_Différé	Carte débit di	5	-122.12
18	00523	615243H	Compte_Dépôts	Compte de dépô	6	406.21
19	00523	615243H	Carte_Différé	Carte débit di	6	-200
20	00521	062332P	Compte_Dépôts	Compte de dépô	7	1790.22
21	00521	062332P	Carte_Différé	Carte débit di	7	-555.66
22	00521	889261D	Compte_Dépôts	Compte de dépô	8	394.87
23	00521	889261D	Carte_Différé	Carte débit di	8	-552.87
24	00521	009060K	Livret_A	Livret A	8	590.98
25	00521	545823Z	Compte_Dépôts	Compte de dépô	9	-679.08
26	00521	545823Z	Carte_Différé	Carte débit di	9	-276.21
27	00521	104721W	Livret_A	Livret A	9	200
28	00521	921116A	Livret_Banque	Compte sur Liv	9	52.11
29	00521	415921B	Livret_Jeune	Livret Jeune	9	400
30	00521	812005Q	Livret_Dév_Dur	Livret Dév.Dur	9	100
31	00523	823452N	Compte_Dépôts	Compte de dépô	10	-2186.86
32	00523	823452N	Carte_Différé	Carte débit di	10	0
33	00523	238245E	Compte_Dépôts	Compte de dépô	11	234.02
34	00523	238245E	Carte_Différé	Carte débit di	11	-300
35	00602	458263T	Compte_Dépôts	Compte de dépô	12	1825.54
36	00523	904161A	Compte_Dépôts	Compte de dépô	13	12.09
37	00523	904161A	Carte_Différé	Carte débit di	13	-212.98
38	00523	219071L	Livret_A	Livret A	13	432.76
39	00521	045123P	Compte_Dépôts	Compte de dépô	14	275.7
40	00521	045123P	Carte_Différé	Carte débit di	14	-104.1
41	00521	014276Q	Livret_A	Livret A	14	1032.47
42	00521	290129R	Livret_Banque	Compte sur Liv	14	31.3
43	00521	146321M	Livret_Jeune	Livret Jeune	14	818.38
44	00521	401002B	Livret_Dév_Dur	Livret Dév.Dur	14	82.23
45	00523	987123P	Compte_Dépôts	Compte de dépô	15	4572.1
46	00523	987123P	Carte_Différé	Carte débit di	15	-2987.65
47	00523	207275Q	Livret_A	Livret A	15	2500
48	00523	297820R	Livret_Banque	Compte sur Liv	15	5628.34
49	00523	245421M	Livret_Jeune	Livret Jeune	15	1600
50	00523	502014B	Livret_Dév_Dur	Livret Dév.Dur	15	1002.11
51	00602	004452N	Compte_Dépôts	Compte de dépô	16	363.49
52	00602	004452N	Carte_Différé	Carte débit di	16	-150
53	00602	084852A	Compte_Dépôts	Compte de dépô	26	665.29
54	00602	084852A	Carte_Différé	Carte débit di	26	-320
+---+-----+-------+--------------+--------------+---+--------+

40

54 rows in set (0,00 sec)

Relation entre les tables
La colonne « ID_Clt » de la table « comptes_bancaires » met en relation cette table
avec la table « clients_bancaires » dans laquelle « ID_Clt » est la clef identifiant le
propriétaire du compte (figure 10-1.7). Cet identifiant donne accès à toutes les in-
formations du propriétaire, son nom, son prénom, sa date de naissance, dans la
table « clients_bancaires ». La jointure met en relation ces deux tables et recherche
des informations sur l’une ou sur l’autre.

Figure 10-1.7
Relation entre les tables clients_bancaires et comptes_bancaires.

Les types de jointure
Il existe deux types de jointures :
• Les jointures internes : Elles ne sélectionnent que les données qui possèdent une

correspondance entre les deux tables. Les éléments absents dans l’une des tables
n’apparaissent pas dans le résultat de la requête ;
C’est le cas de JACQUES ROUSSE ayant comme ID_Clt la valeur 17 dans la
table « Clients_bancaires » et qui n’a aucun compte bancaire. Son identifiant
n’apparaît pas dans la colonne ID_Clt de la table « Comptes_Bancaires ».
De même les comptes bancaires ayant l’ID_Cpt N°53 et 54 ont comme proprié-
taire le client N°26 qui est absent de la table « Clients_bancaires ».

• Les jointures externes : Elles sélectionnent toutes les données, même celles qui
n’ont aucune correspondance dans l’autre table.

Mise en œuvre de la jointure interne

Avec WHERE
La syntaxe suivante affiche pour chaque compte bancaire, le nom et le prénom du
client ainsi que le libellé du compte bancaire.

41

Il est préférable d’identifier clairement la table de chaque champ. Ainsi le nom et
le prénom du client se notent respectivement « clients_bancaires.Nom » et
« clients_bancaires.Prenom », et le libellé du compte se note
« comptes_bancaires.libelle ». De cette manière, il n’y a aucune ambiguïté sur la
table à utiliser, même avec un même nom de champ utilisé dans les deux tables.

Le FROM est suivi de la liste des tables à utiliser. La clause WHERE indique les
champs à mettre en correspondance.

Remarque
L’identifiant ID_Clt, peut se nommer différemment entre les deux tables puisque c’est la
clause WHERE qui indique la relation à prendre en compte.

Voici la requête SQL et son résultat :

mysql> SELECT
clients_bancaires.Nom,clients_bancaires.Prenom,comptes_bancair
es.libelle,comptes_bancaires.Solde FROM clients_bancaires,
comptes_bancaires WHERE
clients_bancaires.ID_Clt=comptes_bancaires.ID_Clt;
+--------------+---------------+--------------+--------+
|Nom |Prenom |libelle |Solde |
+--------------+---------------+--------------+--------+
DUPONT	JEAN	Compte de dépô	550.98
DUPONT	JEAN	Carte débit di	-115.8
DUPONT	JEAN	Livret A	765.32
JACQUENOD	JEAN-CHRISTOPHE	Compte de dépô	-140.17
JACQUENOD	JEAN-CHRISTOPHE	Carte débit di	-200
JACQUENOD	JEAN-CHRISTOPHE	Compte sur Liv	31.3
MURCIAN	CAROLE	Compte de dépô	3185.08
MURCIAN	CAROLE	Carte débit di	-104.1
MURCIAN	CAROLE	Livret A	120
MURCIAN	CAROLE	Compte sur Liv	50
MURCIAN	CAROLE	Livret Jeune	298
LERY	JEAN-MICHEL	Compte de dépô	-688.98
LERY	JEAN-MICHEL	Compte sur Liv	50
LERY	JEAN-MICHEL	Livret Jeune	500
LERY	JEAN-MICHEL	Livret Dév.Dur	120
DE-LA-RUE	JEAN-CHRISTOPHE	Compte de dépô	94.68
DE-LA-RUE	JEAN-CHRISTOPHE	Carte débit di	-122.12
MARTIN	PAUL-DAVID	Compte de dépô	406.21
MARTIN	PAUL-DAVID	Carte débit di	-200
MARTIN	PIERRE	Compte de dépô	1790.22
MARTIN	PIERRE	Carte débit di	-555.66
JACQUENOD	FREDERIC	Compte de dépô	394.87
JACQUENOD	FREDERIC	Carte débit di	-552.87
JACQUENOD	FREDERIC	Livret A	590.98
JACQUENOD	LAURENCE	Compte de dépô	-679.08
JACQUENOD	LAURENCE	Carte débit di	-276.21

42

JACQUENOD	LAURENCE	Livret A	200
JACQUENOD	LAURENCE	Compte sur Liv	52.11
JACQUENOD	LAURENCE	Livret Jeune	400
JACQUENOD	LAURENCE	Livret Dév.Dur	100
DUMOULIN	JEAN-CHRISTOPHE	Compte de dépô	-2186.86
DUMOULIN	JEAN-CHRISTOPHE	Carte débit di	0
LABONNE-JAYAT	OLIVIER	Compte de dépô	234.02
LABONNE-JAYAT	OLIVIER	Carte débit di	-300
DE-LA-FONTAINE	JEAN	Compte de dépô	1825.54
LEVY	SAMUEL	Compte de dépô	12.09
LEVY	SAMUEL	Carte débit di	-212.98
LEVY	SAMUEL	Livret A	432.76
DE-LA-RUE	LAURENCE	Compte de dépô	275.7
DE-LA-RUE	LAURENCE	Carte débit di	-104.1
DE-LA-RUE	LAURENCE	Livret A	1032.47
DE-LA-RUE	LAURENCE	Compte sur Liv	31.3
DE-LA-RUE	LAURENCE	Livret Jeune	818.38
DE-LA-RUE	LAURENCE	Livret Dév.Dur	82.23
DUPONT	JEAN	Compte de dépô	4572.1
DUPONT	JEAN	Carte débit di	-2987.65
DUPONT	JEAN	Livret A	2500
DUPONT	JEAN	Compte sur Liv	5628.34
DUPONT	JEAN	Livret Jeune	1600
DUPONT	JEAN	Livret Dév.Dur	1002.11
MARTIN	ALBERT	Compte de dépô	363.49
MARTIN	ALBERT	Carte débit di	-150
+--------------+---------------+--------------+--------+
52 rows in set (0,00 sec)

Calculons maintenant le solde de chaque client. Travaillons d’abord sur la table
« comptes_bancaires », en affichant le total du solde par numéro de client grâce
aux fonctions SUM() et ROUND() associées à la clause GROUP BY.

mysql> SELECT ID_Clt,ROUND(SUM(Solde),2) AS Solde_Total FROM
comptes_bancaires GROUP BY ID_Clt;
+------+-----------+
|ID_Clt|Solde_Total|
+------+-----------+
1	1200.50
2	-308.87
3	3548.98
4	-18.98
5	-27.44
6	206.21
7	1234.56
8	432.98
9	-203.18
10	-2186.86
11	-65.98

43

12	1825.54
13	231.87
14	2135.98
15	12314.90
16	213.49
26	345.29
+------+-----------+
17 rows in set (0,00 sec)

Réécrivons ensuite cette requête en précisant le nom de la table devant le nom de
chaque champ :

mysql> SELECT
comptes_bancaires.ID_Clt,ROUND(SUM(comptes_bancaires.Solde),2)
AS Solde_Total FROM comptes_bancaires GROUP BY
comptes_bancaires.ID_Clt;

Si la base de données n’a pas été sélectionnée auparavant (USE CoursPHP;), on
l’indique explicitement :

mysql> SELECT
CoursPHP.comptes_bancaires.ID_Clt,ROUND(SUM(CoursPHP.comptes_b
ancaires.Solde),2) AS Solde_Total FROM
CoursPHP.comptes_bancaires GROUP BY
CoursPHP.comptes_bancaires.ID_Clt;

Ces deux syntaxes affichent le même résultat !
Une fois ce résultat obtenu, il suffit d’ajouter le nom et le prénom du client pour

chaque identifiant ID_Clt, en indiquant de le chercher dans la table
« clients_bancaires ». Cela s’obtient en indiquant le nom de la table devant le nom
du champ et en ajoutant le nom de la table dans la liste de la clause FROM. La
clause WHERE effectue la jointure en mettant en relation les champs « ID_Clt »
des deux tables. La syntaxe devient :

mysql> SELECT
comptes_bancaires.ID_Clt,clients_bancaires.Nom,clients_bancair
es.Prenom,ROUND(SUM(comptes_bancaires.Solde),2) AS Solde_Total
FROM comptes_bancaires,clients_bancaires WHERE
comptes_bancaires.ID_Clt=clients_bancaires.ID_Clt GROUP BY
comptes_bancaires.ID_Clt;
+------+--------------+---------------+-----------+
|ID_Clt|Nom |Prenom |Solde_Total|
+------+--------------+---------------+-----------+
1	DUPONT	JEAN	1200.50
2	JACQUENOD	JEAN-CHRISTOPHE	-308.87
3	MURCIAN	CAROLE	3548.98
4	LERY	JEAN-MICHEL	-18.98
5	DE-LA-RUE	JEAN-CHRISTOPHE	-27.44
6	MARTIN	PAUL-DAVID	206.21

44

7	MARTIN	PIERRE	1234.56
8	JACQUENOD	FREDERIC	432.98
9	JACQUENOD	LAURENCE	-203.18
10	DUMOULIN	JEAN-CHRISTOPHE	-2186.86
11	LABONNE-JAYAT	OLIVIER	-65.98
12	DE-LA-FONTAINE	JEAN	1825.54
13	LEVY	SAMUEL	231.87
14	DE-LA-RUE	LAURENCE	2135.98
15	DUPONT	JEAN	12314.90
16	MARTIN	ALBERT	213.49
+------+--------------+---------------+-----------+
16 rows in set (0,00 sec)

Cette syntaxe peut être simplifiée par l’utilisation d’alias via la clause AS,
comme « cb » pour représenter la table « comptes_bancaires », et « cl » pour indi-
quer la table « clients_bancaires » dans la clause FROM. Voici la récriture des
syntaxes précédentes :

mysql> SELECT
cb.ID_Clt,cl.Nom,cl.Prenom,ROUND(SUM(cb.Solde),2) AS
Solde_Total FROM comptes_bancaires AS cb,clients_bancaires AS
cl WHERE cb.ID_Clt=cl.ID_Clt GROUP BY cb.ID_Clt;

Le mot-clef AS étant facultatif il peut être supprimé. La syntaxe devient :

mysql> SELECT
cb.ID_Clt,cl.Nom,cl.Prenom,ROUND(SUM(cb.Solde),2) Solde_Total
FROM comptes_bancaires cb,clients_bancaires cl WHERE
cb.ID_Clt=cl.ID_Clt GROUP BY cb.ID_Clt;

La syntaxe suivante affiche pour chaque personne le solde de son compte de dé-
pôt et de sa carte bancaire différée.

mysql> SELECT cb.ID_Clt,cl.Nom,cl.Prenom,cb.Type,cb.Solde AS
Solde FROM comptes_bancaires AS cb,clients_bancaires AS cl
WHERE cb.ID_Clt=cl.ID_Clt AND (cb.Type="Compte_Dépôts" OR
cb.Type="Carte_Différé");
+------+--------------+---------------+-------------+--------+
|ID_Clt|Nom |Prenom |Type |Solde |
+------+--------------+---------------+-------------+--------+
1	DUPONT	JEAN	Compte_Dépôts	550.98
1	DUPONT	JEAN	Carte_Différé	-115.8
2	JACQUENOD	JEAN-CHRISTOPHE	Compte_Dépôts	-140.17
2	JACQUENOD	JEAN-CHRISTOPHE	Carte_Différé	-200
3	MURCIAN	CAROLE	Compte_Dépôts	3185.08
3	MURCIAN	CAROLE	Carte_Différé	-104.1
4	LERY	JEAN-MICHEL	Compte_Dépôts	-688.98
5	DE-LA-RUE	JEAN-CHRISTOPHE	Compte_Dépôts	94.68
5	DE-LA-RUE	JEAN-CHRISTOPHE	Carte_Différé	-122.12

45

6	MARTIN	PAUL-DAVID	Compte_Dépôts	406.21
6	MARTIN	PAUL-DAVID	Carte_Différé	-200
7	MARTIN	PIERRE	Compte_Dépôts	1790.22
7	MARTIN	PIERRE	Carte_Différé	-555.66
8	JACQUENOD	FREDERIC	Compte_Dépôts	394.87
8	JACQUENOD	FREDERIC	Carte_Différé	-552.87
9	JACQUENOD	LAURENCE	Compte_Dépôts	-679.08
9	JACQUENOD	LAURENCE	Carte_Différé	-276.21
10	DUMOULIN	JEAN-CHRISTOPHE	Compte_Dépôts	-2186.86
10	DUMOULIN	JEAN-CHRISTOPHE	Carte_Différé	0
11	LABONNE-JAYAT	OLIVIER	Compte_Dépôts	234.02
11	LABONNE-JAYAT	OLIVIER	Carte_Différé	-300
12	DE-LA-FONTAINE	JEAN	Compte_Dépôts	1825.54
13	LEVY	SAMUEL	Compte_Dépôts	12.09
13	LEVY	SAMUEL	Carte_Différé	-212.98
14	DE-LA-RUE	LAURENCE	Compte_Dépôts	275.7
14	DE-LA-RUE	LAURENCE	Carte_Différé	-104.1
15	DUPONT	JEAN	Compte_Dépôts	4572.1
15	DUPONT	JEAN	Carte_Différé	-2987.65
16	MARTIN	ALBERT	Compte_Dépôts	363.49
16	MARTIN	ALBERT	Carte_Différé	-150
+------+--------------+---------------+-------------+--------+
30 rows in set (0,00 sec)

La syntaxe suivante cumule le solde du compte de dépôt et de la carte bancaire
différée, soit le solde de fin de mois.

mysql> SELECT
cb.ID_Clt,cl.Nom,cl.Prenom,cb.Type,ROUND(SUM(cb.Solde),2) AS
Solde_Fin_Mois FROM comptes_bancaires AS cb,clients_bancaires
AS cl WHERE cb.ID_Clt=cl.ID_Clt AND (cb.Type="Compte_Dépôts"
OR cb.Type="Carte_Différé") GROUP BY cb.ID_Clt;
+-----+--------------+---------------+-------------+--------+
|ID_Clt|Nom |Prenom |Type |Solde_Fin_Mois|
+-----+--------------+---------------+-------------+--------+
1	DUPONT	JEAN	Compte_Dépôts	435.18
2	JACQUENOD	JEAN-CHRISTOPHE	Compte_Dépôts	-340.17
3	MURCIAN	CAROLE	Compte_Dépôts	3080.98
4	LERY	JEAN-MICHEL	Compte_Dépôts	-688.98
5	DE-LA-RUE	JEAN-CHRISTOPHE	Compte_Dépôts	-27.44
6	MARTIN	PAUL-DAVID	Compte_Dépôts	206.21
7	MARTIN	PIERRE	Compte_Dépôts	1234.56
8	JACQUENOD	FREDERIC	Compte_Dépôts	-158.00
9	JACQUENOD	LAURENCE	Compte_Dépôts	-955.29
10	DUMOULIN	JEAN-CHRISTOPHE	Compte_Dépôts	-2186.86
11	LABONNE-JAYAT	OLIVIER	Compte_Dépôts	-65.98
12	DE-LA-FONTAINE	JEAN	Compte_Dépôts	1825.54
13	LEVY	SAMUEL	Compte_Dépôts	-200.89
14	DE-LA-RUE	LAURENCE	Compte_Dépôts	171.60

46

| 15|DUPONT |JEAN |Compte_Dépôts| 1584.45|
| 16|MARTIN |ALBERT |Compte_Dépôts| 213.49|
+-----+--------------+---------------+-------------+--------+
16 rows in set (0,00 sec)

Avec INNER JOIN
La jointure précédente utilisait la clause WHERE. Cette clause a été utilisée pour
faciliter la compréhension, puisque elle avait déjà été présentée, mais elle est deve-
nue obsolète pour les jointures. On lui préfère la syntaxe JOIN plus explicite. La
réécriture de :

mysql> SELECT
cb.ID_Clt,cl.Nom,cl.Prenom,ROUND(SUM(cb.Solde),2) Solde_Total
FROM comptes_bancaires cb,clients_bancaires cl WHERE
cb.ID_Clt=cl.ID_Clt GROUP BY cb.ID_Clt;

Se note :

mysql> SELECT
cb.ID_Clt,cl.Nom,cl.Prenom,ROUND(SUM(cb.Solde),2) Solde_Total
FROM comptes_bancaires cb INNER JOIN clients_bancaires cl ON
cb.ID_Clt=cl.ID_Clt GROUP BY cb.ID_Clt;

Cette syntaxe indique que les données sont récupérées à partir de la table
« comptes_bancaires », et que la jointure interne (INNER JOIN) est effectuée avec
la table « clients_bancaires ». La clause ON fait la liaison entre les deux tables.
Voici son résultat :

+------+--------------+---------------+-----------+
|ID_Clt|Nom |Prenom |Solde_Total|
+------+--------------+---------------+-----------+
1	DUPONT	JEAN	1200.50
2	JACQUENOD	JEAN-CHRISTOPHE	-308.87
3	MURCIAN	CAROLE	3548.98
4	LERY	JEAN-MICHEL	-18.98
5	DE-LA-RUE	JEAN-CHRISTOPHE	-27.44
6	MARTIN	PAUL-DAVID	206.21
7	MARTIN	PIERRE	1234.56
8	JACQUENOD	FREDERIC	432.98
9	JACQUENOD	LAURENCE	-203.18
10	DUMOULIN	JEAN-CHRISTOPHE	-2186.86
11	LABONNE-JAYAT	OLIVIER	-65.98
12	DE-LA-FONTAINE	JEAN	1825.54
13	LEVY	SAMUEL	231.87
14	DE-LA-RUE	LAURENCE	2135.98
15	DUPONT	JEAN	12314.90
16	MARTIN	ALBERT	213.49
+------+--------------+---------------+-----------+

47

16 rows in set (0,00 sec)

Il est possible d’ajouter des clauses GROUP BY, ORDER BY, LIMIT, après la
clause JOIN. Cette syntaxe affiche le résultat précédent par ordre croissant du
Solde_Total.

mysql> SELECT
cb.ID_Clt,cl.Nom,cl.Prenom,ROUND(SUM(cb.Solde),2) Solde_Total
FROM comptes_bancaires cb INNER JOIN clients_bancaires cl ON
cb.ID_Clt=cl.ID_Clt GROUP BY cb.ID_Clt ORDER BY Solde_Total;
+------+--------------+---------------+-----------+
|ID_Clt|Nom |Prenom |Solde_Total|
+------+--------------+---------------+-----------+
10	DUMOULIN	JEAN-CHRISTOPHE	-2186.86
2	JACQUENOD	JEAN-CHRISTOPHE	-308.87
9	JACQUENOD	LAURENCE	-203.18
11	LABONNE-JAYAT	OLIVIER	-65.98
5	DE-LA-RUE	JEAN-CHRISTOPHE	-27.44
4	LERY	JEAN-MICHEL	-18.98
6	MARTIN	PAUL-DAVID	206.21
16	MARTIN	ALBERT	213.49
13	LEVY	SAMUEL	231.87
8	JACQUENOD	FREDERIC	432.98
1	DUPONT	JEAN	1200.50
7	MARTIN	PIERRE	1234.56
12	DE-LA-FONTAINE	JEAN	1825.54
14	DE-LA-RUE	LAURENCE	2135.98
3	MURCIAN	CAROLE	3548.98
15	DUPONT	JEAN	12314.90
+------+--------------+---------------+-----------+
16 rows in set (0,00 sec)

De la même manière :

mysql> SELECT
cb.ID_Clt,cl.Nom,cl.Prenom,cb.Type,ROUND(SUM(cb.Solde),2) AS
Solde_Fin_Mois FROM comptes_bancaires AS cb,clients_bancaires
AS cl WHERE cb.ID_Clt=cl.ID_Clt AND (cb.Type="Compte_Dépôts"
OR cb.Type="Carte_Différé") GROUP BY cb.ID_Clt;

Devient :

mysql> SELECT
cb.ID_Clt,cl.Nom,cl.Prenom,cb.Type,ROUND(SUM(cb.Solde),2) AS
Solde_Fin_Mois FROM comptes_bancaires AS cb INNER JOIN
clients_bancaires AS cl ON cb.ID_Clt=cl.ID_Clt AND
(cb.Type="Compte_Dépôts" OR cb.Type="Carte_Différé") GROUP BY
cb.ID_Clt;

Et affiche :

48

+------+--------------+---------------+-------------+--------+
|ID_Clt|Nom |Prenom |Type |Solde_Fin_Mois|
+------+--------------+---------------+-------------+--------+
1	DUPONT	JEAN	Compte_Dépôts	435.18
2	JACQUENOD	JEAN-CHRISTOPHE	Compte_Dépôts	-340.17
3	MURCIAN	CAROLE	Compte_Dépôts	3080.98
4	LERY	JEAN-MICHEL	Compte_Dépôts	-688.98
5	DE-LA-RUE	JEAN-CHRISTOPHE	Compte_Dépôts	-27.44
6	MARTIN	PAUL-DAVID	Compte_Dépôts	206.21
7	MARTIN	PIERRE	Compte_Dépôts	1234.56
8	JACQUENOD	FREDERIC	Compte_Dépôts	-158.00
9	JACQUENOD	LAURENCE	Compte_Dépôts	-955.29
10	DUMOULIN	JEAN-CHRISTOPHE	Compte_Dépôts	-2186.86
11	LABONNE-JAYAT	OLIVIER	Compte_Dépôts	-65.98
12	DE-LA-FONTAINE	JEAN	Compte_Dépôts	1825.54
13	LEVY	SAMUEL	Compte_Dépôts	-200.89
14	DE-LA-RUE	LAURENCE	Compte_Dépôts	171.60
15	DUPONT	JEAN	Compte_Dépôts	1584.45
16	MARTIN	ALBERT	Compte_Dépôts	213.49
+------+--------------+---------------+-------------+--------+
16 rows in set (0,00 sec)

Mise en œuvre de la jointure externe avec LEFT JOIN et RIGHT JOIN
Les jointures externes sélectionnent toutes les données, mêmes celles qui sont ab-
sentes dans l’autre table. Les deux syntaxes sont :
• LEFT JOIN : Toutes les données de la table située à gauche de JOIN sont affi-

chées, même celles n’ayant aucune correspondance dans la table située à droite ;
• RIGHT JOIN : Toutes les données de la table située à droite de JOIN sont affi-

chées, même celles n’ayant aucune correspondance dans la table située à gauche.
Pour comprendre la différence entre la jointure interne et les deux jointures ex-

ternes, gauches et droites, comparons les résultats des trois syntaxes :
Jointure interne : INNER JOIN
La syntaxe suivante affiche la somme des comptes avec une jointure interne.

Seules les informations ayant une correspondance entre les deux tables,
« comptes_bancaires » et « clients_bancaires », sont affichées.

Ainsi le compte ayant comme client le « ID_Clt » N°26 présent dans la table
« comptes_bancaires » mais absent de « clients_bancaires » n’est pas affiché.

De la même manière, le client ayant comme « ID_Clt » le N°17 (JACQUES
ROUSSE) dans la table « clients_bancaires » qui ne possède aucun compte dans
« comptes_bancaires » n’est pas affiché.

mysql> SELECT
cb.ID_Clt,cl.Nom,cl.Prenom,ROUND(SUM(cb.Solde),2) Solde_Total
FROM comptes_bancaires cb INNER JOIN clients_bancaires cl ON
cb.ID_Clt=cl.ID_Clt GROUP BY cb.ID_Clt;

49

+------+--------------+---------------+-----------+
|ID_Clt|Nom |Prenom |Solde_Total|
+------+--------------+---------------+-----------+
1	DUPONT	JEAN	1200.50
2	JACQUENOD	JEAN-CHRISTOPHE	-308.87
3	MURCIAN	CAROLE	3548.98
4	LERY	JEAN-MICHEL	-18.98
5	DE-LA-RUE	JEAN-CHRISTOPHE	-27.44
6	MARTIN	PAUL-DAVID	206.21
7	MARTIN	PIERRE	1234.56
8	JACQUENOD	FREDERIC	432.98
9	JACQUENOD	LAURENCE	-203.18
10	DUMOULIN	JEAN-CHRISTOPHE	-2186.86
11	LABONNE-JAYAT	OLIVIER	-65.98
12	DE-LA-FONTAINE	JEAN	1825.54
13	LEVY	SAMUEL	231.87
14	DE-LA-RUE	LAURENCE	2135.98
15	DUPONT	JEAN	12314.90
16	MARTIN	ALBERT	213.49
+------+--------------+---------------+-----------+
16 rows in set (0,00 sec)

Jointure externe gauche : LEFT JOIN
La syntaxe suivante affiche la somme des comptes avec une jointure externe

sur la table de gauche, soit la table « comptes_bancaires ».Toutes les informations
de la table de gauche « comptes_bancaires » avec ou sans correspondance dans la
table de droite « clients_bancaires » sont affichées.

Ainsi le compte ayant comme « ID_Clt » le client N°26 dans la table située à
gauche de JOIN, « comptes_bancaires », est affiché sans aucun Nom ni prénom, et
un solde de 345,29 € alors que le client N°26 (ID_Clt) est absent de la table située
à droite de JOIN, « clients_bancaires ».

mysql> SELECT
cb.ID_Clt,cl.Nom,cl.Prenom,ROUND(SUM(cb.Solde),2) Solde_Total
FROM comptes_bancaires cb LEFT JOIN clients_bancaires cl ON
cb.ID_Clt=cl.ID_Clt GROUP BY cb.ID_Clt;
+------+--------------+---------------+-----------+
|ID_Clt|Nom |Prenom |Solde_Total|
+------+--------------+---------------+-----------+
1	DUPONT	JEAN	1200.50
2	JACQUENOD	JEAN-CHRISTOPHE	-308.87
3	MURCIAN	CAROLE	3548.98
4	LERY	JEAN-MICHEL	-18.98
5	DE-LA-RUE	JEAN-CHRISTOPHE	-27.44
6	MARTIN	PAUL-DAVID	206.21
7	MARTIN	PIERRE	1234.56
8	JACQUENOD	FREDERIC	432.98
9	JACQUENOD	LAURENCE	-203.18

50

10	DUMOULIN	JEAN-CHRISTOPHE	-2186.86
11	LABONNE-JAYAT	OLIVIER	-65.98
12	DE-LA-FONTAINE	JEAN	1825.54
13	LEVY	SAMUEL	231.87
14	DE-LA-RUE	LAURENCE	2135.98
15	DUPONT	JEAN	12314.90
16	MARTIN	ALBERT	213.49
26	NULL	NULL	345.29
+------+--------------+---------------+-----------+
17 rows in set (0,00 sec)

Jointure externe droite : RIGHT JOIN
La syntaxe suivante affiche la somme des comptes avec une jointure externe

sur la table de droite, soit la table « clients_bancaires ».Toutes les informations de
la table « clients_bancaires » avec ou sans correspondance dans la table de gauche
« comptes_bancaires » sont affichées.

Ainsi le client JACQUES ROUSSE ayant pour « ID_Clt » le N°17 dans la table
située à droite de JOIN, « clients_bancaires », est affiché avec un solde NULL
puisqu’il est absent de la table située à gauche de JOIN, « comptes_bancaires ».

mysql> SELECT
cl.ID_Clt,cl.Nom,cl.Prenom,ROUND(SUM(cb.Solde),2) Solde_Total
FROM comptes_bancaires cb RIGHT JOIN clients_bancaires cl ON
cb.ID_Clt=cl.ID_Clt GROUP BY cl.ID_Clt;
+------+--------------+---------------+-----------+
|ID_Clt|Nom |Prenom |Solde_Total|
+------+--------------+---------------+-----------+
1	DUPONT	JEAN	1200.50
2	JACQUENOD	JEAN-CHRISTOPHE	-308.87
3	MURCIAN	CAROLE	3548.98
4	LERY	JEAN-MICHEL	-18.98
5	DE-LA-RUE	JEAN-CHRISTOPHE	-27.44
6	MARTIN	PAUL-DAVID	206.21
7	MARTIN	PIERRE	1234.56
8	JACQUENOD	FREDERIC	432.98
9	JACQUENOD	LAURENCE	-203.18
10	DUMOULIN	JEAN-CHRISTOPHE	-2186.86
11	LABONNE-JAYAT	OLIVIER	-65.98
12	DE-LA-FONTAINE	JEAN	1825.54
13	LEVY	SAMUEL	231.87
14	DE-LA-RUE	LAURENCE	2135.98
15	DUPONT	JEAN	12314.90
16	MARTIN	ALBERT	213.49
17	ROUSSE	JACQUES	NULL
+------+--------------+---------------+-----------+
17 rows in set (0,00 sec)

51

Sauvegarde de la base de données
Cette partie présente la sauvegarde d’une base de données. Au niveau du shell,
après avoir quitter le moniteur MySQL si vous y étiez, saisissez la commande sui-
vante, puis le mot de passe lorsqu’il est demandé :

$ mysqldump -u root -p --opt CoursPHP >
sauvegarde_CoursPHP.sql
Enter password: xxxx

Cela produit le fichier sauvegarde_CoursPHP.sql dans le répertoire courant :

$ ls -l sauvegarde_CoursPHP.sql
-rw-rw-r-- 1 lery lery 2071 mars 30 16:54
sauvegarde_CoursPHP.sql

Ce fichier contient toutes les syntaxes SQL recréant les différentes tables de la
base de données « CoursPHP ». Certaines lignes sont remplacées par des « … ».

$ cat sauvegarde_CoursPHP.sql
-- MySQL dump 10.13 Distrib 5.6.21, for Linux (x86_64)
-- Host: localhost Database: CoursPHP
-- ---
-- Server version 5.6.21
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT
*/;
/*!40101 SET
@OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION
*/;
/*!40101 SET NAMES utf8 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS,
UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,
FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE,
SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;
--
-- Table structure for table `personnes`
--
DROP TABLE IF EXISTS `personnes`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `personnes` (
 `ID` int(11) NOT NULL AUTO_INCREMENT,
 `Nom` varchar(255) NOT NULL,
 `Prenom` varchar(255) NOT NULL,

52

 `Age` int(11) NOT NULL,
 PRIMARY KEY (`ID`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8
COMMENT='Table de personnes';
...

Restauration de la base de données
La base de données « CoursPHP » n’est pas sauvegardée elle-même par la syntaxe
précédente. Si elle a été supprimée il faut préalablement la recréer avant d’effectuer
la restauration. La restauration peut être obtenue par la commande suivante :

$ mysql -u root -h localhost CoursPHP -p <
sauvegarde_CoursPHP.sql
Enter password: xxxx

Ou bien sous le moniteur MySQL :

$ mysql --no-defaults -u root -h localhost -p
Enter password: xxxx
mysql> USE CoursPHP;
Database changed
mysql> SOURCE sauvegarde_CoursPHP.sql;
Query OK, 0 rows affected (0,00 sec)
...

Les requêtes préparées

Principe
Durant une session SQL, il est courant d’effectuer plusieurs fois la même requête
avec différentes valeurs. Le langage SQL permet de préparer à l’avance une re-
quête et de lui affecter un nom. Elle devient réutilisable, et s’exécute sur les valeurs
fournies au moment de son utilisation. Cette requête préparée n’existe que durant
la session dans laquelle elle est créée. Elle utilise généralement des variables de
l’utilisateur qui sont présentées dans la section suivante.

Les variables utilisateurs
Les variables SQL sont toutes précédées par le caractère @. Elles contiennent des
valeurs comme des entiers, des réels, des chaînes de caractères. Seuls les lettres,
chiffres ainsi que les caractères souligné, dollar et point sont autorisés pour le nom
des variables. En SQL, le nom des variables n’est pas sensible à la casse.

Création et modification

53

L’instruction « SET » crée une variable SQL si elle n’existe pas, ou la modifie
sinon. La variable n’existe que durant la session SQL. La syntaxe suivante crée les
deux variables @Nom et @Prenom. Le signe d’affectation est le caractère « = » :

mysql> SET @Nom='MARTIN',@Prenom='JEAN';
Query OK, 0 rows affected (0,00 sec)

Il est également possible de créer ou d’affecter les variables avec la syntaxe SE-
LECT. Le signe d’affectation est le caractère « := » :

mysql> SELECT @Nom:='MARTIN',@Prenom:='JEAN';
+--------------+---------------+
|@Nom:='MARTIN'|@Prenom:='JEAN'|
+--------------+---------------+
|MARTIN |JEAN |
+--------------+---------------+
1 row in set (0,00 sec)

L’affichage
L’affichage d’une variable s’obtient avec la syntaxe SELECT :

mysql> SELECT @Nom;
+------+
|@Nom |
+------+
|MARTIN|
+------+
1 row in set (0,00 sec)

L’utilisation
L’exemple suivant montre l’utilisation de la variable @Nom dans un SELECT sur la
table « personnes ». Cette variable sert de filtre dans une clause WHERE :

mysql> SELECT ID,Nom,Prenom,Age FROM personnes WHERE Nom=@Nom;
+--+------+------------+---+
|ID|Nom |Prenom |Age|
+--+------+------------+---+
6	MARTIN	PIERRE-DAVID	27
7	MARTIN	PIERRE	56
16	MARTIN	ALBERT	25
+--+------+------------+---+
3 rows in set (0,00 sec)

Création d’une requête préparée
L’exemple précédent affiche toutes les personnes ayant comme nom MARTIN.
Pour obtenir la liste des DUPONT il suffit de saisir :

54

mysql> SET @Nom='DUPONT';
Query OK, 0 rows affected (0,00 sec)

mysql> SELECT ID,Nom,Prenom,Age FROM personnes WHERE Nom=@Nom;
+--+------+------+---+
|ID|Nom |Prenom|Age|
+--+------+------+---+
| 1|DUPONT|JEAN | 28|
|15|DUPONT|JEAN | 54|
+--+------+------+---+
2 rows in set (0,00 sec)

Afin d’éviter de répéter cette syntaxe, on peut préparer cette requête et lui affec-
ter un nom grâce à la syntaxe PREPARE :

mysql> PREPARE selection_nom FROM 'SELECT ID,Nom,Prenom,Age
FROM personnes WHERE Nom=?';
Query OK, 0 rows affected (0,01 sec)
Statement prepared

Voici plusieurs remarques concernant cette syntaxe :
• Le nom de la requête selection_nom, n’est pas entre apostrophes ;
• Le texte de la requête est lui entre apostrophes ;
• Une seule requête peut être indiquée dans une requête préparée ;
• Le paramètre à utiliser au moment de l’exécution est représenté par le caractère

« ? ». Il peut y avoir plusieurs paramètres ;
• Les paramètres ne peuvent contenir que des données.

La syntaxe suivante montre un autre exemple avec deux paramètres :

mysql> PREPARE selection_nom_prenom FROM 'SELECT
ID,Nom,Prenom,Age FROM personnes WHERE Nom=? AND Prenom=?';
Query OK, 0 rows affected (0,00 sec)
Statement prepared

La syntaxe suivante utilise deux paramètres et la clause LIKE :

mysql> PREPARE selection_nom_like_prenom FROM 'SELECT
ID,Nom,Prenom,Age FROM personnes WHERE Nom=? AND Prenom LIKE
?';
Query OK, 0 rows affected (0,00 sec)
Statement prepared

Exécution d’une requête préparée
L’exécution d’une requête préparée utilise la syntaxe EXECUTE et USING pour
passer les valeurs aux paramètres. Voici l’exécution de selection_nom :

55

mysql> EXECUTE selection_nom USING @Nom;
+--+------+------+---+
|ID|Nom |Prenom|Age|
+--+------+------+---+
| 1|DUPONT|JEAN | 28|
|15|DUPONT|JEAN | 54|
+--+------+------+---+
2 rows in set (0,00 sec)

Voici un autre exemple d’utilisation de cette requête préparée :

mysql> SET @Nom='MARTIN';
Query OK, 0 rows affected (0,00 sec)

mysql> EXECUTE selection_nom USING @Nom;
+--+------+------------+---+
|ID|Nom |Prenom |Age|
+--+------+------------+---+
6	MARTIN	PIERRE-DAVID	27
7	MARTIN	PIERRE	56
16	MARTIN	ALBERT	25
+--+------+------------+---+
3 rows in set (0,00 sec)

Voici l’exécution de selection_nom_prenom sur un nom et un prénom :

mysql> SET @Prenom='PIERRE';
Query OK, 0 rows affected (0,00 sec)
mysql> EXECUTE selection_nom_prenom USING @Nom, @Prenom;
+--+------+------+---+
|ID|Nom |Prenom|Age|
+--+------+------+---+
| 7|MARTIN|PIERRE| 56|
+--+------+------+---+
1 row in set (0,00 sec)

Voici l’exécution de selection_nom_like_prenom sur un nom et un prénom :

mysql> SET @Prenom='%PIERRE%';
Query OK, 0 rows affected (0,00 sec)

mysql> EXECUTE selection_nom_like_prenom USING @Nom, @Prenom;
+--+------+------------+---+
|ID|Nom |Prenom |Age|
+--+------+------------+---+
| 6|MARTIN|PIERRE-DAVID| 27|
| 7|MARTIN|PIERRE | 56|
+--+------+------------+---+
2 rows in set (0,00 sec)

56

Suppression d’une requête préparée
La syntaxe DEALLOCATE PREPARE supprime une requête préparée.

mysql> DEALLOCATE PREPARE selection_nom_prenom;
Query OK, 0 rows affected (0,00 sec)

Après cette syntaxe, la requête préparée n’existe plus :

mysql> EXECUTE selection_nom_prenom USING @Nom, @Prenom;
ERROR 1243 (HY000): Unknown prepared statement handler
(selection_nom_prenom) given to EXECUTE

Avantages
Lors du lancement d’une requête, la base de données effectue deux traitement :
l’analyse (syntaxique) de la requête, puis son exécution. Si la même requête est
lancée plusieurs fois, son analyse est effectuée à chaque fois.

Avec la requête préparée, cette analyse ne se fait qu’une seule fois, lors de sa
préparation. Chaque lancement ultérieur ne fait que l’exécution, ce qui optimise le
temps de traitement.

Le second avantage est d’ordre sécuritaire. Dans le cadre d’une session SQL du-
rant laquelle l’utilisateur saisie lui même les données de la requête directement à la
console, la sécurité est assurée par cet utilisateur qui contrôle la nature des don-
nées. Cela est tout à fait différent lorsque que l’accès à la base se fait via un pro-
gramme PHP. Dans ce cas, l’utilisateur du site web peut très bien entrer, à la place
de données attendues comme un nom, une requête SQL, et ainsi avoir un accès
direct à la base de données et potentiellement récupérer des données sensibles
comme des mots de passe. Ce type de piratage se nomme injection SQL.

Avec les requêtes préparées, les paramètres sont identifiés comme tels et ne peu-
vent pas être assimilés à des requêtes, ce qui protège contre l’injection SQL.

Le mode transactionnel

Problématique initiale
La gestion des données dans des tables de bases de données peut nécessiter plu-
sieurs requêtes.

Si à chaque requête mettant à jour les données (UPDATE ou INSERT) la base
reste « cohérente » alors cela ne pose aucun problème, même s’il y a une erreur. En
effet, à chaque requête on peut détecter l’erreur de mise à jour et corriger le pro-
blème.

57

Par contre, si la mise à jour est plus « complexe », la cohérence des données peut
être obtenue après plusieurs requêtes. Ainsi, si la première requête est correctement
effectuée mais pas la deuxième, alors les données restes incohérentes. Dans ce cas
il faut pouvoir détecter l’erreur et revenir en arrière de cet ensemble de requêtes, à
l’état d’origine.

C’est le cas d’un virement bancaire entre les comptes de deux clients, qui est
constitué de deux actions : Le débit du premier compte bancaire ; Le crédit du se-
cond compte bancaire. Il est impératif que ces actions soient effectuées toutes les
deux pour que le virement soit effectif.

Si le débit du premier compte est effectué et que le crédit du second compte
échoue, alors la somme a bien été débitée du compte initial mais n’a pas été crédi-
tée sur le compte final. Le solde cumulé de ces deux comptes n’est plus le même.

Il faut détecter l’erreur de la transaction, le virement, constituée par deux actions
complémentaires, le débit et le crédit, et corriger l’erreur afin de conserver
l’équilibre des deux comptes !

De plus, il est impératif que, pendant les modifications au sein d’une transaction,
aucun autre utilisateur ne puisse venir s’intercaler et modifier les tables sur les-
quelles travaille la transaction. Une transaction gère le verrouillage des tables accé-
dées. Dès la première modification effectuée à l’intérieur d’une transaction, toute
modification par un autre utilisateur sera bloquée. Ainsi, si un autre utilisateur tente
de modifier un élément de la table, sa modification reste en attente, elle ne sera
prise en compte qu’à la fin de la transaction en cours de traitement.

Un traitement « global » regroupant plusieurs requêtes est une transaction.
Elle doit être vue, appliquée, ou annulée, comme si c’était une seule requête.

Il existe deux moyens de mettre en œuvre le mode transactionnel :
• via la désactivation de la validation automatique pendant la session de travail :

autocommit ;
• via la création d’une transaction particulière et ponctuelle : START TRAN-

SACTION;

Une caractéristique du moteur de stockage
Selon le moteur de stockage des données, le mode transactionnel sera disponible ou
non. Ainsi le moteur Mylsam, performant et ayant un index FULL-TEXT, ne sup-
porte ni les clefs étrangères, ni les transactions. Le moteur InnoDB, performant
dans l’intégrité des données, gère les clefs étrangères et les transactions. C’est le
moteur qui a été utilisé lors de la création des différentes tables.

Gestion de la validation automatique via autocommit

Principe

58

Par défaut le moteur InnoDB valide automatiquement toutes les transactions, et
considère chaque requête comme une transaction. Cette validation automatique est
définie par le mode « autocommit ».

Affichage de l’état
La syntaxe suivante affiche son état :

mysql> SELECT @@autocommit;
+------------+
|@@autocommit|
+------------+
| 1|
+------------+
1 row in set (0,00 sec)

Quand ce mode est actif (valeur 1), chaque mise à jour de la table (INSERT,
UPDATE, …), est réellement effectuée et écrite sur le disque.

Modification de l’état
Si on souhaite faire des modifications sur les tables et à tout moment pouvoir les
valider ou revenir en arrière, il faut désactiver ce mode, comme suit :

mysql> SET autocommit = 0;
Query OK, 0 rows affected (0,00 sec)

Une fois « autocommit » désactivé, la session de travail possède en permanence
une transaction ouverte, ce qui n’est pas sans conséquence. C’est-à-dire que, si on
veut rendre permanentes les modifications, il faudra les valider via l’instruction
COMMIT pour provoquer leur écriture sur disque. Si on veut les annuler, il faut
utiliser l’instruction ROLLBACK pour les supprimer de la mémoire.

Les instructions COMMIT ou ROLLBACK terminent la transaction courante, et
une nouvelle transaction est à nouveau ouverte, tant que le mode « autocommit »
reste désactivé. La syntaxe suivante revient au mode de validation automatique.

mysql> SET autocommit = 1;
Query OK, 0 rows affected (0,00 sec)

Inconvénients
La gestion directe de « autocommit » pour effectuer des transactions pose un cer-
tain nombre de problèmes :
8. Tant que les modifications ne sont pas validées via COMMIT, rien n’est écrit sur

disque dur, tout reste dans la mémoire de la session de travail. L’affichage
« laisse croire » à l’utilisateur que les traitements sont effectués, mais ce n’est
que la vision de la mémoire de sa session de travail. En effet, si un autre utilisa-

59

teur se connecte en même temps et consulte la table, il ne verra que les informa-
tions stockées sur disque, donc aucune des modifications du premier utilisateur !

9. Dès la première modification à l’intérieur d’une transaction, le verrouillage des
tables accédées est effectif. Dans le cas présent, la désactivation de « autocom-
mit » implique qu’une transaction est ouverte en permanence. Ainsi les autres
utilisateurs peuvent se retrouver bloqués très longtemps, empêchant le fonction-
nement « normal » concurrentiel de la base de données.
Ce mode de gestion des transactions via « autocommit » n’est pas recommandé,

pour les raisons évoquées précédemment. Il est préférable d’ouvrir une transaction
quand on en a besoin, avec START TRANSACTION. Elle se terminera définiti-
vement avec COMMIT ou ROLLBACK.

Exemples d’utilisation
Le premier exemple présente le fonctionnement du mode « autocommit », et le fait
qu’une transaction reste ouverte en permanence. Le second exemple montre que
tant que le mode « autocommit » est désactivé, les modifications ne sont pas écrites
sur disque, les autres utilisateurs ne les voient pas.
Exemple de fonctionnement
Cet exemple présente « autocommit », et l’ouverture permanente d’une transaction.
On se connecte et on sélectionne la base de données « CoursPHP »

$ mysql --no-defaults -u root -h localhost -p
Enter password: xxxx
Welcome to the MySQL monitor. Commands end with ; or \g...
mysql> USE CoursPHP;
Reading table information for completion of table and ...
Database changed

On affiche l’état des comptes N°1 et N°7, de la table « comptes_bancaires »

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+-----+--------+
| 1| 00602|165143P|Compte_Dépôts| 1| 550.98|
| 7| 00602|154123P|Compte_Dépôts| 3|3185.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

On désactive le mode « autocommit »

mysql> SET autocommit = 0;
Query OK, 0 rows affected (0,00 sec)

60

Dorénavant, il faut valider ou annuler explicitement les requêtes pour les écrire
ou non sur le disque. On débite 200 € du compte N°7, et on crédite 200 € au
compte N°1 :

mysql> UPDATE comptes_bancaires SET Solde=Solde-200 WHERE
Id_Cpt=7;
Query OK, 1 row affected (0,00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
mysql> UPDATE comptes_bancaires SET Solde=Solde+200 WHERE
Id_Cpt=1;
Query OK, 1 row affected (0,00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

L’état des deux comptes montre que les modifications sont gardées en mémoire.

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 750.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2985.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

On annule les traitements précédents.

mysql> ROLLBACK;
Query OK, 0 rows affected (0,01 sec)

L’état des deux comptes montre que rien n’a été pris en compte, les valeurs
d’origines sont affichées :

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 550.98|
| 7| 00602|154123P|Compte_Dépôts| 3|3185.08|
+------+------+---------+-----------+------+-------+
2 rows in set (0,00 sec)

À nouveau, on débite 200 € du compte N°7, et on crédite 200 € au compte N°1 :

mysql> UPDATE comptes_bancaires SET Solde=Solde-200 WHERE
Id_Cpt=7;
Query OK, 1 row affected (0,00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

61

mysql> UPDATE comptes_bancaires SET Solde=Solde+200 WHERE
Id_Cpt=1;
Query OK, 1 row affected (0,00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

On affiche l’état des deux comptes, les modifications sont mémorisées.

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 750.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2985.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

On valide les traitements précédents.

mysql> COMMIT;
Query OK, 0 rows affected (0,01 sec)

L’affichage des deux comptes montre les mêmes données :

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 750.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2985.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

Une annulation puis un affichage montre que rien ne change, la validation pré-
cédente a écrit les modifications sur le disque.

mysql> ROLLBACK;
Query OK, 0 rows affected (0,00 sec)
mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 750.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2985.08|
+------+------+-------+-------------+------+-------+

62

2 rows in set (0,00 sec)

Une nouvelle fois, on débite 200 € du compte N°7 :

mysql> UPDATE comptes_bancaires SET Solde=Solde-200 WHERE
Id_Cpt=7;
Query OK, 1 row affected (0,00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

On affiche les deux comptes :

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 750.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2785.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

On annule les traitements:

mysql> ROLLBACK;
Query OK, 0 rows affected (0,00 sec)

On affiche les deux comptes. Le débit précédent du compte N°7 est bien annulé,
ce qui démontre qu’une transaction est ouverte en permanence tant que « auto-
commit » est désactivée !

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 750.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2985.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

On réactive le mode « autocommit ». Désormais, chaque modification est écrite
sur disque.

mysql> SET autocommit = 1;
Query OK, 0 rows affected (0,00 sec)

Impact pour les autres utilisateurs

63

Les syntaxes suivantes montrent que tant que le mode « autocommit » est désacti-
vé, et qu’aucune instruction COMMIT n’est exécutée, les modifications ne sont pas
écrites sur disque, les autres utilisateurs ne les voient pas. Pour présenter l’impact
sur les autres utilisateurs nous utilisons deux comptes en parallèle, l’administrateur
« root » et le compte « clientsconsult ».

On se connecte comme administrateur et on sélectionne la base de données
« CoursPHP » :

$ mysql --no-defaults -u root -h localhost -p
Enter password: xxx
Welcome to the MySQL monitor. Commands end with ; or \g...
mysql> USE CoursPHP;
Reading table information for completion of table and ...
Database changed

On désactive le mode « autocommit »

mysql> SET autocommit = 0;
Query OK, 0 rows affected (0,00 sec)

On affiche l’état des comptes bancaires N°1 et N°7.

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 750.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2785.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

On débite 100 € du compte N°7, et on crédite 100 € au compte N°1 :

mysql> UPDATE comptes_bancaires SET Solde=Solde-100 WHERE
Id_Cpt=7;
Query OK, 1 row affected (0,00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
mysql> UPDATE comptes_bancaires SET Solde=Solde+100 WHERE
Id_Cpt=1;
Query OK, 1 row affected (0,00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

On affiche l’état des comptes bancaires N°1 et N°7. On voit ces deux modifica-
tions, qui ne sont faites qu’en mémoire de la session de l’administrateur.

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);

64

+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 850.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2685.08|
+------+------+-------+-------------+------+-------+

On ouvre en parallèle une autre session avec le compte clientsconsult et on sé-
lectionne la base de données « CoursPHP ».

$ mysql --no-defaults -u clientsconsult -h localhost -p
Enter password: xxxx
Welcome to the MySQL monitor. Commands end with ; or \g...
mysql> USE CoursPHP;
Reading table information for completion of table and ...
Database changed

On affiche l’état des comptes bancaires N°1 et N°7. On ne voit aucune des mo-
difications effectuées par l’administrateur car elles ne sont pas écrites sur le disque.

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 750.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2785.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

On revient à la session ouverte par l’administrateur, et on exécute l’instruction
COMMIT :

mysql> COMMIT;
Query OK, 0 rows affected (0,01 sec)

Les modifications des comptes bancaires N°1 et N°7 sont écrites sur disque :

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 850.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2685.08|
+------+------+-------+-------------+------+-------+

65

2 rows in set (0,00 sec)

On revient à la session ouverte par clientsconsult, et on affiche à nouveau l’état
des comptes bancaires N°1 et N°7. On voit les modifications de l’administrateur.

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 850.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2685.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

Sur la session de l’administrateur on remet la validation automatique, et on
ferme la session.

mysql> SET autocommit = 1;
Query OK, 0 rows affected (0,00 sec)

mysql> QUIT;
Bye

Sur la session de clientsconsult on ferme la session.

mysql> QUIT;
Bye

Utilisation d’une transaction spécifique avec START TRANSACTION

Principe
L’utilisation d’une transaction spécifique, évite de maintenir une transaction ou-
verte en permanence durant toute la session de travail, ce qui est préjudiciable pour
les autres utilisateurs. Le processus d’écriture sur disque des données avec une
transaction spécifique, est le suivant :
• Avant la transaction la validation est automatique : chaque modification est

écrite sur disque.
• Pendant la transaction la validation n’est plus automatique : L’instruction

COMMIT effectue la validation de l’ensemble des instructions, et provoque
l’écriture simultanée des modifications. L’instruction ROLLBACK annule les
modifications et ne provoque aucune écriture ;

• Après la transaction la validation redevient automatique.
Il est recommandé que chaque requête opérant des modifications les applique ré-

ellement sur disque. Il faut que le mode « autocommit » reste activé par défaut ! Il

66

faut utiliser une transaction spécifique quand l’écriture simultanée sur disque d’un
ensemble de modifications est nécessaire.

Les requêtes :

START TRANSACTION
La syntaxe suivante démarre une nouvelle transaction :

START TRANSACTION;

• Elle désactive « autocommit » jusqu’à la saisie du COMMIT ou ROLLBACK ;
• Elle active le mécanisme de verrouillage « LOCK » de la table, empêchant toute

modification par une autre personne, dès la première modification à l’intérieur
de la transaction.
Après cette syntaxe on saisit la série de requête qui modifie la table (UPDATE,

INSERT, …). Cette syntaxe possède deux alias : BEGIN et BEGIN WORK.
COMMIT
La syntaxe COMMIT termine la transaction en validant les traitements. Les modi-
fications sont écrites sur disque. Le verrouillage de la table est levé après la valida-
tion. Sa syntaxe est :

COMMIT;

ROLLBACK
La syntaxe ROLLBACK termine la transaction en annulant les traitements. Aucune
modification n’est écrite sur disque. Le verrouillage de la table est levé après
l’annulation. Sa syntaxe est :

ROLLBACK;

Si une erreur est détectée sur une des requêtes de la transaction, on peut, via
ROLLBACK, revenir en arrière à l’état initial avant le début de la transaction.

Rappel
Chaque modification est visible durant la transaction pour l’utilisateur qui l’effectue mais elle
est invisible pour les autres tant qu’elle elle n’est pas écrite sur le disque.

Exemples

Exemple d’annulation
On connecte l’administrateur et on sélectionne la base de données « CoursPHP »

$ mysql --no-defaults -u root -h localhost -p
Enter password: xxxx
Welcome to the MySQL monitor. Commands end with ; or \g...
mysql> USE CoursPHP;
Reading table information for completion of table and ...

67

Database changed

Nous souhaitons faire un virement de 200 € du compte N°7 vers le compte N°1.
Voici l’état de ces deux comptes :

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 550.98|
| 7| 00602|154123P|Compte_Dépôts| 3|3185.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

On démarre une transaction :

mysql> START TRANSACTION;

On retire 200 € du compte N°7. La modification est effectuée en mémoire.

mysql> UPDATE comptes_bancaires SET Solde=Solde-200 WHERE
Id_Cpt=7;
Query OK, 1 row affected (0,00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 550.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2985.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

On ajoute 200 € du compte N°100, au lieu du compte N°1. Comme le compte
100 n’existe pas, aucune modification n’est effectuée. La requête donne un résultat
et l’affichage montre la modification.

mysql> UPDATE comptes_bancaires SET Solde=Solde+200 WHERE
Id_Cpt=100;
Query OK, 0 rows affected (0,00 sec)
Rows matched: 0 Changed: 0 Warnings: 0
mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |

68

+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 550.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2985.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

On annule toutes les modifications précédentes. L’état initial est restauré :

mysql> ROLLBACK;
Query OK, 0 rows affected (0,00 sec)
mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 550.98|
| 7| 00602|154123P|Compte_Dépôts| 3|3185.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)
mysql> QUIT;
Bye

Exemple de validation
L’exemple suivant reprend les mêmes opérations, mais sans l’erreur de compte
(100 au lieu de 1). C’est le bon compte qui est crédité. On se connecte comme ad-
ministrateur et on sélectionne la base de données « CoursPHP »

$ mysql --no-defaults -u root -h localhost -p
Enter password: xxxx
Welcome to the MySQL monitor. Commands end with ; or \g...
mysql> USE CoursPHP;
Reading table information for completion of table and ...
Database changed

Nous voulons faire un virement de 200 € du compte N°7 vers le compte N°1.
Voici l’état de ces deux comptes :

mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+---------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 550.98|
| 7| 00602|154123P|Compte_Dépôts| 3|3185.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

69

On démarre une transaction :

mysql> START TRANSACTION;

On retire 200 € du compte N°7. La modification est effectuée en mémoire.

mysql> UPDATE comptes_bancaires SET Solde=Solde-200 WHERE
Id_Cpt=7;
Query OK, 1 row affected (0,00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 550.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2985.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

On ajoute 200 € au compte N°1. La modification est effectuée.

mysql> UPDATE comptes_bancaires SET Solde=Solde+200 WHERE
Id_Cpt=1;
Query OK, 1 row affected (0,00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 750.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2985.08|
+------+------+-------+-------------+------+-------+
2 rows in set (0,00 sec)

On finalise la transaction. Les données sont écrites sur disque :

mysql> COMMIT;
Query OK, 0 rows affected (0,00 sec)
mysql> SELECT ID_Cpt,Agence,Numero,Type,ID_Clt,Solde FROM
comptes_bancaires WHERE Type="Compte_Dépôts" AND (ID_Cpt=1 OR
ID_Cpt=7);
+------+------+-------+-------------+------+-------+
|ID_Cpt|Agence|Numero |Type |ID_Clt|Solde |
+------+------+-------+-------------+------+-------+
| 1| 00602|165143P|Compte_Dépôts| 1| 750.98|
| 7| 00602|154123P|Compte_Dépôts| 3|2985.08|
+------+------+-------+-------------+------+-------+

70

2 rows in set (0,00 sec)

La gestion des utilisateurs
Cette section présente la gestion des utilisateurs en langage SQL.

Principe
MySQL gére les utilisateurs via une identification de la forme : du-
pont@ordinateur.fr. Le fonctionnement de cet identifiant, ainsi que les privilèges
qui lui sont associés ont été présentés au chapitre 10 dans la section phpMyAdmin.

Affichage des utilisateurs existants

La table mysql.user
Pour gérer les utilisateurs il faut se connecter en tant que « root ».

$ mysql --no-defaults -u root -h localhost -p
Enter password: xxxx
Welcome to the MySQL monitor. Commands end with ; or \g...

Les utilisateurs sont gérés dans la table « mysql.user ». La liste est obtenue par la
syntaxe suivante :

mysql> SELECT User, Host, Password FROM mysql.user;
+----+---------+---+
|User|Host |Password |
+----+---------+---+
root	localhost	*9C4FE4A10F01988F50D685C3F9515570588FEFDF
root	linux	
	localhost	
	linux	
pma	localhost	*AC4D94A19F01998F50D68AC3F951A862588AEFA8
+----+---------+---+
5 rows in set (0,00 sec)

L’utilisateur anonyme
L’affichage précédent montre deux lignes dont la colonne « User » est vide, et la
colonne « Host » indique « localhost » et « linux ». C’est l’utilisateur « anonyme »
qui est créé dès l’installation de MySQL, en même temps que la base « test ».
N’importe quel utilisateur qui n’est pas enregistré (aucun login) et qui n’a donc pas
de mot de passe, peut se connecter à la base « test » et à toutes les bases dont le
nom commence par « test ». En voici un exemple.

On se connecte sans login ni mot de passe (connexion anonyme) :

71

$ mysql --no-defaults -h localhost
Welcome to the MySQL monitor. Commands end with ; or \g...

On tente d’accéder à la base « CoursPHP », l’accès est refusé.

mysql> USE CoursPHP;
ERROR 1044 (42000): Access denied for user ''@'localhost' to
database 'CoursPHP'

On tente d’accéder à la base « test », l’accès est accepté.

mysql> USE test;
Reading table information for completion of table and ...
Database changed

On voit toutes les tables de la base « test » :

mysql> SHOW TABLES;
+--------------+
|Tables_in_test|
+--------------+
|materiel |
+--------------+
1 row in set (0,01 sec)

On voit tous les enregistrements de la table « materiel » :

mysql> SELECT * FROM materiel ;
+--+-------+-----+
|ID|Libelle|Prix |
+--+-------+-----+
| 1|pelle | 12.5|
| 2|marteau|10.26|
+--+-------+-----+
2 rows in set (0,01 sec)
mysql> QUIT;
Bye

Création d’un compte utilisateur CREATE USER
Il existe deux méthodes pour créer des utilisateurs sous MySQL et leur affecter des
privilèges :
1. Utiliser les instructions de gestion des utilisateurs telles que CREATE USER et

GRANT ;
2. Manipuler directement les tables de privilèges avec les instructions INSERT,

UPDATE, DELETE ;
IL est préférable d’utiliser les instructions dédiées à la gestion des utilisateurs,

car elles effectuent des contrôles de cohérence lors de la création, ce qui n’est pas
le cas avec l’accès direct aux tables ce qui reste très dangereux.

72

Dans cet exemple nous créons deux nouveaux comptes d’utilisateur :
• personnesadm@% : pour un accès depuis n’importe quel poste de connexion ;
• personnesadm@local : pour un accès local (depuis le serveur MySQL) ;

Le mot de passe est défini en même temps via la syntaxe « IDENTIFIED BY ».
Les « xxxx » doivent être remplacées par le mot de passe réel.

mysql> CREATE USER personnesadm@'%' IDENTIFIED BY 'xxxx' ;
Query OK, 0 rows affected (0,27 sec)
mysql> CREATE USER personnesadm@localhost IDENTIFIED BY 'xxxx'
;
Query OK, 0 rows affected (0,00 sec)

Le mot de passe aurait pu être affecté ou modifié séparément. Ainsi la syntaxe
de la création du compte « personnesadm@localhost » peut également s’écrire :

mysql> CREATE USER personnesadm@localhost ;
mysql> SET PASSWORD FOR personnesadm@localhost =
PASSWORD('xxx') ;

La syntaxe suivante vérifie que les deux comptes ont été créés :

mysql> SELECT User, Host, Password FROM mysql.user;
+------------+---------+------------------------------------+
|User |Host |Password |
+------------+---------+------------------------------------+
root	localhost	*9C4FE4A10F01988F50D685C3F9515570...
root	linux	
	localhost	
	linux	
pma	localhost	*AC4D94A19F01998F50D68AC3F951A862...
personnesadm	localhost	*70828A978420F0614DEBA7174BF38083...
personnesadm	%	*70828A978420F0614DEBA7174BF38083...
+------------+---------+------------------------------------+
7 rows in set (0,00 sec)

Gestion des privilèges

Affichage des privilèges SHOW GRANTS

La syntaxe suivante affiche les privilèges de l’utilisateur « pma@locahost » :

mysql> SHOW GRANTS FOR pma@localhost;
+---+
|Grants for pma@localhost |

73

+---+
|GRANT USAGE ON *.* TO 'pma'@'localhost' IDENTIFIED BY ... |
|GRANT SELECT, INSERT, UPDATE, DELETE, EXECUTE ON `phpmy ...|
|GRANT SELECT (Host, Create_priv, Shutdown_priv, Delete_p...|
|GRANT SELECT (Table_priv, Column_priv, Table_name, Db, ... |
|GRANT SELECT ON `mysql`.`host` TO 'pma'@'localhost' |
|GRANT SELECT ON `mysql`.`db` TO 'pma'@'localhost' |
+---+
6 rows in set (0,00 sec)

Ajout de privilèges GRANT
L’ajout de privilèges utilise la syntaxe SQL, GRANT.
Pour le compte personnesadm@%
La syntaxe suivante affecte le privilège de consulter la table « personnes » (SE-
LECT) pour cet utilisateur depuis n’importe quel poste de travail.

mysql> GRANT SELECT ON CoursPHP.personnes TO personnesadm@'%';
Query OK, 0 rows affected (0,00 sec)

La syntaxe suivante vérifie les privilèges du compte de cet utilisateur :

mysql> SHOW GRANTS FOR personnesadm@'%';
+--+
|Grants for personnesadm@% |
+--+
|GRANT USAGE ON *.* TO 'personnesadm'@'%' IDENTIFIED BY ... |
|GRANT SELECT ON `CoursPHP`.`personnes` TO 'personnesadm'@'%'|
+--+
2 rows in set (0,00 sec)

Pour le compte personnesadm@localhost
Nous affectons le privilège de modifier et supprimer la table « personnes » pour
cet utilisateur depuis le serveur.

mysql> GRANT SELECT,INSERT,UPDATE,DELETE ON CoursPHP.personnes
TO personnesadm@localhost;
Query OK, 0 rows affected (0,00 sec)

La syntaxe suivante affiche les privilèges de cet utilisateur :

mysql> SHOW GRANTS FOR personnesadm@localhost;
+--+
|Grants for personnesadm@localhost |
+--+
|GRANT USAGE ON *.* TO 'personnesadm'@'localhost' IDENTIFI...|
|GRANT SELECT, INSERT, UPDATE, DELETE ON `CoursPHP`.`perso...|
+--+
2 rows in set (0,00 sec)

74

Variations syntaxiques
Si on désire affecter le privilège SELECT sur toutes les tables de toutes les bases
de données au compte « personnesadm@localhost », il faut saisir la syntaxe :

mysql> GRANT SELECT ON *.* FROM personnesadm@localhost;

On peut également appliquer cette syntaxe à plusieurs comptes :

mysql> GRANT SELECT ON *.* FROM personnesadm@localhost,
personnes@'%';

Si on désire affecter tous les privilèges sur la table « personnes », il faut saisir la
syntaxe :

mysql> GRANT ALL PRIVILEGES ON CoursPHP.personnes FROM
personnesadm@localhost;

Enfin, il est possible de créer, d’affecter les privilèges et un mot de passe en une
seule syntaxe. Ainsi pour le compte d’utilisateur « personnesadm@localhost »,
pour le créer et lui affecter les privilèges SELECT, INSERT, UPDATE, DELETE
il suffit de saisir :

mysql> GRANT SELECT,INSERT,UPDATE,DELETE ON CoursPHP.personnes
TO personnesadm@localhost IDENTIFIED BY 'xxxx';
Query OK, 0 rows affected (0,00 sec)

Retrait de privilèges REVOKE

Sur une table particulière
Le retrait de privilèges correspond à la syntaxe SQL, REVOKE. La syntaxe sui-
vante retire le privilège « DELETE » à « personnesadm@localhost » sur la table
« personnes ».

mysql> REVOKE DELETE ON CoursPHP.personnes FROM
personnesadm@localhost;
Query OK, 0 rows affected (0,00 sec)

Le privilège DELETE a disparu de la liste pour « personnesadm@localhost ».

mysql> SHOW GRANTS FOR personnesadm@localhost;
+--+
|Grants for personnesadm@localhost |
+--+
|GRANT USAGE ON *.* TO 'personnesadm'@'localhost' IDENTIFI...|
|GRANT SELECT, INSERT, UPDATE ON `CoursPHP`.`personnes` TO...|
+--+
2 rows in set (0,00 sec)

Variations syntaxiques

75

Si on désire supprimer DELETE sur toutes les tables de toutes les bases de don-
nées, il faut saisir la syntaxe :

mysql> REVOKE DELETE ON *.* FROM personnesadm@localhost;

Si on désire supprimer tous les privilèges sur toutes les tables de toutes les bases
de données, il faut saisir la syntaxe :

mysql> REVOKE ALL PRIVILEGES ON *.* FROM
personnesadm@localhost;

On peut également appliquer cette syntaxe à plusieurs comptes : :

mysql> REVOKE ALL PRIVILEGES ON *.* FROM
personnesadm@localhost, personnesadm@'%';

Gestion des paramètres de connexion
Comme cela à été présenté au chapitre 10 dans la section phpMyAdmin, chaque
utilisateur possède des paramètres de connexion comme le nombre maximal de
connexions autorisées. Ces paramètres sont définis dans la table « mysql.user ».

Problématique
La problématique et les conséquences de la mise en œuvre d’une limitation ou non
des paramètres de connexion a été abordée avec phpMyAdmin.

Affichage des paramètres
La syntaxe suivante affiche les paramètres de connexion :
• max_questions (MAX_QUERIES_PER_HOUR) : le nombre de requêtes en-

voyées au serveur, qu’un utilisateur peut exécuter par heure ;
• max_updates (MAX_UPDATES_PER_HOUR) : le nombre de commandes mo-

difiant une table ou base de données, qu’un utilisateur peut exécuter par heure ;
• max_connections (MAX_CONNECTIONS_PER_HOUR) : le nombre de nou-

velles connexions qu’un utilisateur peut démarrer, par heure ;
• max_user_connections (MAX_USER_CONNECTIONS) : le nombre de con-

nexions simultanées pour un utilisateur.

mysql> SELECT
max_questions,max_updates,max_connections,max_user_connections
FROM mysql.user WHERE USER='clientsconsult';
+-------------+-----------+---------------+------------------+
|max_questions|max_updates|max_connections|max_user_connec...|
+-------------+-----------+---------------+------------------+
| 0| 0| 0| 0|
+-------------+-----------+---------------+------------------+
1 row in set (0,00 sec)

76

Modification des paramètres
La syntaxe suivante modifie les paramètres globaux de connexion pour l’utilisateur
« clientsconsult » avec comme valeur :
• max_questions (MAX_QUERIES_PER_HOUR) = 20 ;
• max_updates (MAX_UPDATES_PER_HOUR) = 10 ;
• max_connections (MAX_CONNECTIONS_PER_HOUR) = 5 ;
• max_user_connections (MAX_USER_CONNECTIONS) = 15.

mysql> GRANT ALL ON *.* TO 'clientsconsult'@'%' WITH
MAX_QUERIES_PER_HOUR 20 MAX_UPDATES_PER_HOUR 10
MAX_CONNECTIONS_PER_HOUR 5 MAX_USER_CONNECTIONS 15;
Query OK, 0 rows affected (0,00 sec)

L’affichage confirme la modification :

mysql> SELECT
max_questions,max_updates,max_connections,max_user_connections
FROM mysql.user WHERE USER='clientsconsult';
+-------------+-----------+---------------+------------------+
|max_questions|max_updates|max_connections|max_user_connec...|
+-------------+-----------+---------------+------------------+
| 20| 10| 5| 15|
+-------------+-----------+---------------+------------------+
1 row in set (0,00 sec)

La syntaxe suivante limite les connexions à la base de données « CoursPHP »
lors de la création du compte « clientsconsult » via la syntaxe GRANT.

mysql> GRANT ALL ON CoursPHP.* TO 'clientsconsult'@'%' WITH
MAX_QUERIES_PER_HOUR 20 MAX_UPDATES_PER_HOUR 10
MAX_CONNECTIONS_PER_HOUR 5 MAX_USER_CONNECTIONS 15;

La suppression de la limitation revient à affecter ces paramètres avec la valeur 0
qui indique qu’il n’y a aucune limite définie. La syntaxe devient :

mysql> GRANT ALL ON *.* TO 'clientsconsult'@'%' WITH
MAX_QUERIES_PER_HOUR 0 MAX_UPDATES_PER_HOUR 0
MAX_CONNECTIONS_PER_HOUR 0 MAX_USER_CONNECTIONS 0;

Remarque
La limitation du nombre de connexions dépend du paramètre MAX_USER_CONNECTIONS
de l’utilisateur mais aussi de la valeur de la variable système max_user_connections.

Renommer un compte utilisateur RENAME USER
Il est possible de renommer un compte utilisateur via la syntaxe RENAME USER.
La première syntaxe montre la liste des utilisateurs :

77

mysql> SELECT User, Host, Password FROM mysql.user;
+------------+---------+-------------------------------------+
|User |Host |Password |
+------------+---------+-------------------------------------+
root	localhost	*9C4FE4A10F01988F50D685C3F95155705...
root	linux	
	localhost	
	linux	
pma	localhost	*AC4D94A19F01998F50D68AC3F951A8625...
personnesadm	localhost	*70828A978420F0614DEBA7174BF380835...
personnesadm	%	*70828A978420F0614DEBA7174BF380835...
+------------+---------+-------------------------------------+
7 rows in set (0,00 sec)

La syntaxe suivante renomme le compte personnesadm@'%' en personnescon-
sult@'%':

mysql> RENAME USER personnesadm@'%' TO personnesconsult@'%';
Query OK, 0 rows affected (0,00 sec)

Le compte a bien été renommé :

mysql> SELECT User,Host,Password FROM mysql.user;
+----------------+---------+---------------------------------+
|User |Host |Password |
+----------------+---------+---------------------------------+
root	localhost	*9C4FE4A10F01988F50D685C3F9515...
root	linux	
	localhost	
	linux	
pma	localhost	*AC4D94A19F01998F50D68AC3F951A...
personnesadm	localhost	*70828A978420F0614DEBA7174BF38...
personnesconsult	%	*70828A978420F0614DEBA7174BF38...
+----------------+---------+---------------------------------+
7 rows in set (0,00 sec)

Suppression d’un compte utilisateur DROP USER
La syntaxe pour supprimer un compte d’utilisateur est DROP USER. Voici com-
ment supprimer les deux comptes créés précédemment. La première syntaxe
montre la liste des utilisateurs :

mysql> SELECT User,Host,Password FROM mysql.user;
+----------------+---------+---------------------------------+
|User |Host |Password |
+----------------+---------+---------------------------------+
root	localhost	*9C4FE4A10F01988F50D685C3F9515...
root	linux	
	localhost	

78

	linux	
pma	localhost	*AC4D94A19F01998F50D68AC3F951A...
personnesadm	localhost	*70828A978420F0614DEBA7174BF38...
personnesconsult	%	*70828A978420F0614DEBA7174BF38...
+----------------+---------+---------------------------------+
7 rows in set (0,00 sec)

Suppression du compte « personnesadm@localhost » :

mysql> DROP USER personnesadm@localhost;
Query OK, 0 rows affected (0,00 sec)

Suppression du compte « personnesconsult@% » :

mysql> DROP USER personnesconsult@'%';
Query OK, 0 rows affected (0,00 sec)

L’affichage de la liste des utilisateurs confirme la suppression :

mysql> SELECT User,Host,Password FROM mysql.user;
+----+---------+---+
|User|Host |Password |
+----+---------+---+
root	localhost	*9C4FE4A10F01988F50D685C3F9515570588FEFDF
root	linux	
	localhost	
	linux	
pma	localhost	*AC4D94A19F01998F50D68AC3F951A862588AEFA8
+----+---------+---+
5 rows in set (0,00 sec)

10-1.3 SECURISATION DE MYSQL

Sécurisation des comptes
Dans cette partie nous présentons les points de vigilance et les préconisations pour
sécuriser les accès au serveur MySQL.

79

Le compte root

Mot de passe
À l’installation de MySQL, un identifiant « root » est créé pour administrer le ser-
veur. Par défaut il ne possède aucun mot de passe. Il est impératif d’affecter un
mot de passe sur le compte « root ». Cet administrateur possède deux comptes,
selon le type d’accès.

mysql> SELECT User,Host,Password FROM mysql.user;
+----+---------+---+
|User|Host |Password |
+----+---------+---+
root	localhost	*9C4FE4A10F01988F50D685C3F9515570588FEFDF
root	linux	
	localhost	
	linux	
pma	localhost	*AC4D94A19F01998F50D68AC3F951A862588AEFA8
+----+---------+---+
5 rows in set (0,00 sec)

Il faut modifier le mot de passe du compte de « localhost », mais aussi des autres
comptes ayant une adresse IP d’un poste distant (ce qui n’est pas le cas de linux
dans l’exemple précédent). Cela peut se faire via phpMyAdmin, ou bien via la
syntaxe SQL :

mysql> SET PASSWORD FOR
root@localhost=PASSWORD('nouveau_motdepasse');

Accès à distance
Pour ce compte, il faut vérifier que l’accès à partir de n’importe quel poste de con-
nexion n’est pas ouvert. Cela se fait en tentant de se connecter en tant que « root »
à partir d’une poste distant.

Dans l’exemple suivant l’accès distant est refusé. Le serveur MySQL possède
l’adresse IP 10.211.55.2. La syntaxe suivante tente d’établir la connexion, en tant
que « root », vers ce serveur à partir d’un poste distant 10.211.55.2 et échoue :

$ mysql --no-defaults -u root -h 10.211.55.16 -p
Enter password: xxxx
ERROR 1130 (HY000): Host '10.211.55.2' is not allowed to
connect to this MySQL server

Si le compte « root » est ouvert en accès à partir de l’extérieur, il faut vérifier
que cela est limité au seul poste de travail habituel et personnel de la personne
qui administre le serveur MySQL. Dans notre exemple il s’agit de l’ordinateur
« pdtadm.cnam.fr ».

mysql> SELECT User,Host,Password FROM mysql.user;

80

+----+--------------+---------------------------------------+
|User|Host |Password |
+----+--------------+---------------------------------------+
root	localhost	*9C4FE4A10F01988F50D685C3F9515570588...
root	linux	
root	pdtadm.cnam.fr	*9C4FE4A10F01988F50D685C3F9515570588...
	localhost	
	linux	
pma	localhost	*AC4D94A19F01998F50D68AC3F951A862588...
root	localhost	*9C4FE4A10F01988F50D685C3F9515570588...
+----+--------------+---------------------------------------+
7 rows in set (0,01 sec)

Le compte anonyme
L’administrateur devra se poser la question du bien fondé de laisser l’accès à son
serveur via un compte anonyme sans mot de passe. Que n’importe qui puisse accé-
der au serveur MySQL et ait tous les droits sur une base « test » peut paraître
« anormal ». Si tel est le cas, il faudra supprimer les comptes anonymes.

On affiche la liste des comptes :

mysql> SELECT User,Host,Password FROM mysql.user;
+----+---------+---+
|User|Host |Password |
+----+---------+---+
root	localhost	*9C4FE4A10F01988F50D685C3F9515570588FEFDF
root	linux	
	localhost	
	linux	
pma	localhost	*AC4D94A19F01998F50D68AC3F951A862588AEFA8
+----+---------+---+
5 rows in set (0,01 sec)

On supprime les deux comptes anonymes (sans login) :

mysql> DROP USER ''@localhost;
Query OK, 0 rows affected (0,00 sec)
mysql> DROP USER ''@linux;
Query OK, 0 rows affected (0,00 sec)

Les comptes anonymes sont bien supprimés :

mysql> SELECT User,Host,Password FROM mysql.user;
+----+---------+---+
|User|Host |Password |
+----+---------+---+
root	localhost	*9C4FE4A10F01988F50D685C3F9515570588FEFDF
root	linux	
pma	localhost	*AC4D94A19F01998F50D68AC3F951A862588AEFA8

81

+----+---------+---+
3 rows in set (0,00 sec)

Si un compte anonyme existe pour une connexion depuis n’importe quel poste
(le caractère '%' apparaît dans la colonne « Host »), sa suppression se note :

mysql> DROP USER ''@'%';
Query OK, 0 rows affected (0,00 sec)

La base de test
De la même manière, l’administrateur devra se poser la question du bien fondé de
conserver une base « test », ou de toute base dont le nom commence par « test_ ».
Pour supprimer ces bases de données il suffit de saisir :

mysql> DROP DATABASE test;
mysql> DELETE FROM mysql.db WHERE Db='test' OR Db='test_%';

Script de sécurisation
MySQL propose un script shell de sécurisation mysql_secure_installation,
qui effectue les tâches précédentes. Sous Linux, pour l’exécuter il faut saisir :

$ /opt/lampp/bin/mysql_secure_installation

Puis il suffit de répondre aux questions posées. On affiche l’état des comptes et
des bases de données du serveur avant de lancer le script de sécurisation :

$ mysql --no-defaults -u root -h localhost -p
Enter password: xxxx
Welcome to the MySQL monitor. Commands end with ; or \g...
mysql> SELECT User,Host,Password FROM mysql.user;
+----+---------+---+
|User|Host |Password |
+----+---------+---+
root	localhost	*9C4FE4A10F01988F50D685C3F9515570588FEFDF
root	linux	
	localhost	
	linux	
pma	localhost	*AC4D94A19F01998F50D68AC3F951A862588AEFA8
+----+---------+---+		
5 rows in set (0,00 sec)		
mysql> SHOW databases;		
+------------------+		
Database		
+------------------+		
information_schema		
CoursPHP		
cdcol		

82

|mysql |
|performance_schema|
|phpmyadmin |
|test |
+------------------+
7 rows in set (0,00 sec)
mysql> QUIT;
Bye

On exécute le script mysql_secure_installation.

$ /opt/lampp/bin/mysql_secure_installation
NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL
MySQL SERVERS IN PRODUCTION USE! PLEASE READ EACH STEP
CAREFULLY!
In order to log into MySQL to secure it, we'll need the
current password for the root user. If you've just installed
MySQL, and you haven't set the root password yet, the password
will be blank, so you should just press enter here.
Enter current password for root (enter for none): xxxx
OK, successfully used password, moving on...
Setting the root password ensures that nobody can log into the
MySQL root user without the proper authorisation.
You already have a root password set, so you can safely answer
'n'.
Change the root password? [Y/n] Y
New password: xxxx
Re-enter new password: xxxx
Password updated successfully!
Reloading privilege tables..... Success!
By default, a MySQL installation has an anonymous user,
allowing anyone to log into MySQL without having to have a
user account created for them. This is intended only for
testing, and to make the installation
go a bit smoother. You should remove them before moving into
a production environment.
Remove anonymous users? [Y/n] Y
 ... Success!
Normally, root should only be allowed to connect from
'localhost'. This ensures that someone cannot guess at the
root password from the network.
Disallow root login remotely? [Y/n] Y
 ... Success!
By default, MySQL comes with a database named 'test' that
anyone can access. This is also intended only for testing, and
should be removed before moving into a production environment.
Remove test database and access to it? [Y/n] Y
 - Dropping test database...
 ... Success!

83

 - Removing privileges on test database...
 ... Success!
Reloading the privilege tables will ensure that all changes
made so far will take effect immediately.
Reload privilege tables now? [Y/n] Y
 ... Success!
All done! If you've completed all of the above steps, your
MySQL installation should now be secure. Thanks for using
MySQL!
Cleaning up...

Attention de bien vérifier qu’il n’y a aucune erreur ! Il se peut que lors de la
suppression de la base « test », l’erreur suivante se produise.

Remove test database and access to it? [Y/n] Y
 - Dropping test database...
ERROR 1010 (HY000) at line 1: Error dropping database (can't
rmdir './test/', errno: 17)
 ... Failed! Not critical, keep moving...
 - Removing privileges on test database...
 ... Success!

Cela provient du fait que la tentative de suppression du répertoire « test », via la
commande « rmdir ./test/ », échoue. Ce répertoire contient les données de la base
« test » et doit être totalement vide, ce qui n’est pas le cas. En fait il contient encore
un fichier (vide) dont le nom est « NOTEMPTY » :

$ sudo ls -al /opt/lampp/var/mysql/test/NOTEMPTY
-rw-r--r-- 1 mysql mysql 0 juin 26 2013
/opt/lampp/var/mysql/test/NOTEMPTY

Il suffit supprimer ce fichier :

$ sudo rm /opt/lampp/var/mysql/test/NOTEMPTY

Puis relancer l’exécution du script mysql_secure_installation, pour sup-
primer l’erreur. L’affichage des comptes utilisateurs et des bases de données con-
firme la sécurisation :

$ mysql --no-defaults -u root -h localhost -p
Enter password: xxxx
Welcome to the MySQL monitor. Commands end with ; or \g...

Les comptes anonymes ou n’ayant aucun mot de passe ont disparus :

mysql> SELECT User,Host,Password FROM mysql.user;
+----+---------+---+
|User|Host |Password |
+----+---------+---+
|root|localhost|*9C4FE4A10F01988F50D685C3F9515570588FEFDF|

84

|pma |localhost|*AC4D94A19F01998F50D68AC3F951A862588AEFA8|
+----+---------+---+
2 rows in set (0,01 sec)

La base « test » a disparue :

mysql> SHOW databases;
+------------------+
|Database |
+------------------+
|information_schema|
|CoursPHP |
|cdcol |
|mysql |
|performance_schema|
|phpmyadmin |
+------------------+
6 rows in set (0,00 sec)
mysql> QUIT;
Bye

Sécurisation réseau
Si votre serveur MySQL est accédé uniquement par votre site web, alors il faut
sécuriser son accès réseau, du reste du monde. Il faut restreindre l’accès du ser-
veur MySQL au seul serveur web qui accède à la base de données.

La figure 10-1.8 présente cette architecture type de sécurisation des serveurs via
les matériels réseaux (routeurs par exemple). Les serveurs « phy-
siques » hébergeant Apache et MySQL sont distincts.

Le serveur Apache est dans la DMZ (Zone Démilitarisée), ce qui donne un accès
complet au site web de l’entreprise depuis Internet.

Le serveur MySQL est dans l’intranet, inaccessible depuis Internet. Seul le ser-
veur physique Apache, peut accéder au serveur physique MySQL, via le port de
communication réseau (3306 par exemple pour le service MySQL). Ce contrôle
d’accès peut être mis en œuvre via un routeur.

Ainsi aucun ordinateur extérieur à l’entreprise ne peut accéder directement au
serveur MySQL. L’administrateur devra se connecter à partir d’un poste de
l’intranet, ou bien utiliser un VPN (Réseau Privé Virtuel) installé sur son poste
personnel extérieur à l’entreprise.

85

Figure 10-1.8
Sécurisation réseau du serveur MySQL.

10-1.4 PDO – PHP DATA OBJECTS – COMPLEMENT

Présentation
PDO est un outil complet donnant accès, à partir d’un programme PHP, à
n’importe quel type de base de données, comme MysQL, PostgeSQL ou Oracle. Il
a été présenté au chapitre 10.

Programmes PHP avec filtrage et fonctions SQL
Les différentes requêtes ont été présentées au chapitre 10. Cette section présente
des exemples de programmes utilisant le filtrage avec la clause WHERE et des
fonctions SQL.

Le filtrage
Les programmes suivants, téléchargeables sur le site de l’éditeur, présentent les
versions shell et web pour une clause WHERE avec un ORDER BY sur l’âge.
• MySQL_PDO_query_fetch_where_order_by_personnes_shell.php
• MySQL_PDO_query_fetch_where_order_by_personnes_web.php

Les programmes suivants, téléchargeables sur le site de l’éditeur, présentent les
versions shell et web pour une clause WHERE sur l’âge ou le prénom, avec un ORDER
BY sur le nom et une LIMIT à 5.
• MySQL_PDO_query_fetch_where_order_by_limit_personnes_shell.php
• MySQL_PDO_query_fetch_where_order_by_limit_personnes_web.php

86

Les fonctions d’agrégat
Cette section présente des exemples d’appels de fonctions d’agrégat. Les pro-
grammes suivants sont les versions shell et web de l’appel de la fonction AVG()
avec une clause GROUP BY.
• MySQL_PDO_query_fetch_round_avg_group_by_clients_shell.php
• MySQL_PDO_query_fetch_round_avg_group_by_clients_web.php

Voici l’exécution du programme
MySQL_PDO_query_fetch_round_avg_group_by_clients_shell.php.

Listing 10-1.1 : Exécution de
MySQL_PDO_query_fetch_round_avg_group_by_clients_shell.php
$ php
MySQL_PDO_query_fetch_round_avg_group_by_clients_shell.php

 Solde moyen des comptes clients par Etat Civil

Etat_Civil solde_moyen

Marié 150.22
Célibataire 975.67
Veuf 6774.73
Divorcé 102.21
Décédé 1825.54

La figure 10-1.9 présente le résultat de l’exécution du programme
MySQL_PDO_query_fetch_round_avg_group_by_clients_web.php.

Figure 10-1.9
Affichage web query-fetch-round-avg.

Les programmes suivants présentent les versions shell et web pour les fonctions
ROUND() et SUM() avec des clauses GROUP BY et HAVING.
• MySQL_PDO_query_fetch_round_sum_group_by_having_clients_shell.
php

• MySQL_PDO_query_fetch_round_sum_group_by_having_clients_web.ph
p

87

Voici l’exécution du programme
MySQL_PDO_query_fetch_round_sum_group_by_having_clients_shell.ph
p. L’affichage de certaines colonnes a été tronqué.

Listing 10-1.2 : Exécution de
MySQL_PDO_query_fetch_round_sum_group_by_having_clients_shell.php
$ php
MySQL_PDO_query_fetch_round_sum_group_by_having_clients_shell.
php

 Liste des clients

ID Nom Prenom Age Date_Naissance Etat_Civil Nb_En Solde

1 DUPONT JEAN 27 1987-12-28 Marié 2 1200.5
2 JACQUENOD JEAN-CHRIST 54 1961-02-10 Marié 1 -308.87
3 MURCIAN CAROLE 44 1970-10-20 Célib 1 3548.98
4 LERY JEAN-MICHEL 25 1989-05-07 Marié 2 -18.98
5 DE-LA-RUE JEAN-CHRIST 23 1991-06-18 Divor 0 -27.44
6 MARTIN PAUL-DAVID 23 1991-08-22 Célib 0 206.21
7 MARTIN PIERRE 56 1959-01-18 Veuf 3 1234.56
8 JACQUENOD FREDERIC 25 1989-11-27 Marié 0 432.98
9 JACQUENOD LAURENCE 24 1990-11-01 Marié 0 -203.18
10 DUMOULIN JEAN-CHRIST 54 1960-08-22 Marié 2 -2186.86
11 LABONNE-JAYAT OLIVIER 54 1960-09-23 Célib 1 -65.98
12 DE-LA-FONTAINE JEAN 110 1905-01-22 Décéd 0 1825.54
13 LEVY SAMUEL 56 1959-03-27 Divor 3 231.87
14 DE-LA-RUE LAURENCE 25 1989-12-13 Marié 1 2135.98
15 DUPONT JEAN 54 1960-10-15 Veuf 2 12314.9
16 MARTIN ALBERT 25 1989-08-15 Célib 1 213.49

Liste des clients ayant un solde total dépassant (ex: 1000) :
1000

 Solde total des comptes clients par âge

Age solde_total

25 2763.47
27 1200.50
44 3548.98
54 9753.19
56 1466.43
110 1825.54

La figure 10-1.10 présente le résultat de l’exécution du programme
MySQL_PDO_query_fetch_round_sum_group_by_having_clients_web.php.

88

Le premier écran (1) affiche les clients et le formulaire de saisie du filtrage. Le
second (2) affiche le résultat du traitement.

Figure 10-1.10
Affichage web query-fetch-round-sum-groupby.

Les fonctions sur les chaînes de caractères
Cette section présente des exemples de fonctions sur les chaînes de caractères.
Les programmes suivants sont les versions shell et web de l’appel des fonctions
CONCAT() et LOWER() sur le Prénom et le Nom.
• MySQL_PDO_query_fetch_concat_lower_clients_shell.php
• MySQL_PDO_query_fetch_concat_lower_clients_web.php

Voici l’exécution du programme
MySQL_PDO_query_fetch_concat_lower_clients_shell.php.

Listing 10-1.3 : Exécution de
MySQL_PDO_query_fetch_concat_lower_clients_shell.php
--
 Concaténation des prénoms et des noms
--
ID prenom_nom Date_Naissance
--
1 jean DUPONT 1987-12-28

89

2 jean-christophe JACQUENOD 1961-02-10
3 carole MURCIAN 1970-10-20
4 jean-michel LERY 1989-05-07
5 jean-christophe DE-LA-RUE 1991-06-18
6 paul-david MARTIN 1991-08-22
7 pierre MARTIN 1959-01-18
8 frederic JACQUENOD 1989-11-27
9 laurence JACQUENOD 1990-11-01
10 jean-christophe DUMOULIN 1960-08-22
11 olivier LABONNE-JAYAT 1960-09-23
12 jean DE-LA-FONTAINE 1905-01-22
13 samuel LEVY 1959-03-27
14 laurence DE-LA-RUE 1989-12-13
15 jean DUPONT 1960-10-15
16 albert MARTIN 1989-08-15

La figure 10-1.11 présente le résultat de l’exécution du programme
MySQL_PDO_query_fetch_concat_lower_clients_web.php.

Figure 10-1.11
Affichage web query-fetch-concat-lower.

Les fonctions mathématiques
Cette section présente des exemples de fonctions mathématiques. Les pro-
grammes suivants sont les versions shell et web de l’appel de la fonction TRUN-
CATE() sur le solde.
• MySQL_PDO_query_fetch_truncate_clients_shell.php

90

• MySQL_PDO_query_fetch_truncate_clients_web.php
Voici l’exécution du programme

MySQL_PDO_query_fetch_truncate_clients_shell.php.

Listing 10-1.4 : Exécution de MySQL_PDO_query_fetch_truncate_clients_shell.php
$ php MySQL_PDO_query_fetch_truncate_clients_shell.php
--
 Solde entier
--
ID Nom Prenom Solde_Entier
--
1 DUPONT JEAN 1200
2 JACQUENOD JEAN-CHRISTOPHE -308
3 MURCIAN CAROLE 3548
4 LERY JEAN-MICHEL -18
5 DE-LA-RUE JEAN-CHRISTOPHE -27
6 MARTIN PAUL-DAVID 206
7 MARTIN PIERRE 1234
8 JACQUENOD FREDERIC 432
9 JACQUENOD LAURENCE -203
10 DUMOULIN JEAN-CHRISTOPHE -2186
11 LABONNE-JAYAT OLIVIER -65
12 DE-LA-FONTAINE JEAN 1825
13 LEVY SAMUEL 231
14 DE-LA-RUE LAURENCE 2135
15 DUPONT JEAN 12314
16 MARTIN ALBERT 213

La figure 10-1.12 présente le résultat de l’exécution du programme
MySQL_PDO_query_fetch_truncate_clients_web.php.

91

Figure 10-1.12
Affichage web query-fetch-truncate.

Les fonctions de dates et d’heures
Cette section présente des exemples de fonctions de dates et d’heures. Les pro-
grammes suivants sont les versions shell et web du filtrage selon la date de nais-
sance.
• MySQL_PDO_query_fetch_filtre_date_naissance_clients_shell.php
• MySQL_PDO_query_fetch_filtre_date_naissance_clients1_web.php
• MySQL_PDO_query_fetch_filtre_date_naissance_clients1b_web.php
• MySQL_PDO_query_fetch_filtre_date_naissance_clients2_web.php

Ces programmes demandent de saisir une date au format JJ/MM/AAAA. Il faut
vérifier la validité de cette date puis la convertir au format AAAA-MM-JJ spéci-
fique à la base de données.

Deux fonctions ont été écrites pour la validation et la conversion :
• ValidationDate(): Cette fonction admet deux paramètres : la date, et le for-

mat de cette date. Elle retourne un booléen qui indique si la date est valide et si
elle est conforme au format indiqué. Par exemple :
♦ ValidationDate('2012-02-28', 'Y-m-d')); est VRAI
♦ ValidationDate('30/02/2012', 'd/m/Y')) ; est FAUX
♦ ValidationDate('2012-02-28T12:12:12+02:00', 'Y-m-d\TH:i:sP')); est VRAI
♦ ValidationDate('Tue, 28 Feb 2012 12:12:12 +0200', 'D, d M Y H:i:s O')); est

VRAI
♦ ValidationDate('14:50', 'H:i')); est VRAI
♦ ValidationDate('14:77', 'H:i')); est FAUX

92

• ConversionDate (): Cette fonction admet trois paramètres : la date, le format
de départ, le format cible. Elle retourne la date indiquée, convertie dans le for-
mat cible. Le format de départ indique comment lire la date fournie en argument.
Par exemple :
♦ ConversionDate('2012-02-28','Y-m-d','d/m/Y'); retourne 28/02/2012
♦ ConversionDate('2012-02-30','Y-m-d','d/m/Y'); retourne 01/03/2012
♦ ConversionDate('28/02/2012', 'd/m/Y', 'Y-m-d'); retourne 2012-02-28
♦ ConversionDate('30/02/2012', 'd/m/Y', 'Y-m-d'); retourne 2012-03-01
Ces deux fonctions utilisent la méthode createFromFormat() de la classe

d’objet DateTime et la méthode date_default_timezone_set(). Il est néces-
saire de définir le « timezone » pour le bon fonctionnement de cette méthode avec
l’instruction :

date_default_timezone_set("Europe/Paris");

Ces deux fonctions sont stockées dans
MySQL_include_sprog_commun_shell.php et
MySQL_include_sprog_commun_web.php.

Ces deux fichiers contiennent les sous-programmes utilisés respectivement dans
les versions shell et web des programmes. Il sont inclus au début de chaque pro-
gramme par l’instruction :

include '../../INCLUDE/MySQL_include_sprog_commun_shell.php';

Voici ces deux fonctions PHP :

// -- Fonctions de vérification et de conversion des dates --
date_default_timezone_set("Europe/Paris");
// -- validation d'un format de date --
function ValidationDate($date_dep, $format = 'Y-m-d H:i:s')
{ $date_cree=DateTime::createFromFormat($format, $date_dep);
 return ($date_cree && ($date_cree->format($format) ==
$date_dep));
}
// -- Conversion d'un format de date --
function
ConversionDate($date_dep,$format_dep='d/m/Y',$format_cible='Y-
m-d')
{$date_cree=DateTime::createFromFormat($format_dep,$date_dep);
 $date_cible=$date_cree->format($format_cible);
 return $date_cible;
}

Le programme
MySQL_PDO_query_fetch_filtre_date_naissance_clients_shell.php
utilise la fonction SQL DATE_FORMAT pour transformer la date du format AAAA-
MM-JJ au format JJ/MM/AAAA.

93

Voici la ligne de ce programme qui effectue cette requête :

// -- Exécution de la requête --
 $reponse = $bdd->query('SELECT
ID,Nom,Prenom,DATE_FORMAT(Date_Naissance,\'%d/%m/%Y\') As
Date_Naissance FROM clients');

Voici un exemple d’exécution :

Listing 10-1.5 : Exécution de
MySQL_PDO_query_fetch_filtre_date_naissance_clients_shell.php
$ php
MySQL_PDO_query_fetch_filtre_date_naissance_clients_shell.php
--
 Liste des clients
--
ID Nom Prenom Date_Naissance
--
1 DUPONT JEAN 28/12/1987
2 JACQUENOD JEAN-CHRISTOPHE 10/02/1961
3 MURCIAN CAROLE 20/10/1970
4 LERY JEAN-MICHEL 07/05/1989
5 DE-LA-RUE JEAN-CHRISTOPHE 18/06/1991
6 MARTIN PAUL-DAVID 22/08/1991
7 MARTIN PIERRE 18/01/1959
8 JACQUENOD FREDERIC 27/11/1989
9 JACQUENOD LAURENCE 01/11/1990
10 DUMOULIN JEAN-CHRISTOPHE 22/08/1960
11 LABONNE-JAYAT OLIVIER 23/09/1960
12 DE-LA-FONTAINE JEAN 22/01/1905
13 LEVY SAMUEL 27/03/1959
14 DE-LA-RUE LAURENCE 13/12/1989
15 DUPONT JEAN 15/10/1960
16 MARTIN ALBERT 15/08/1989

Afficher la liste des clients dont la date de naissance est
supérieure à (ex: 01/01/1970) : 01/01/1970
--
 Liste des clients ayant une date de naissance >= 01/01/1970
--
ID Nom Prenom Date_Naissance
--
1 DUPONT JEAN 28/12/1987
3 MURCIAN CAROLE 20/10/1970
4 LERY JEAN-MICHEL 07/05/1989
5 DE-LA-RUE JEAN-CHRISTOPHE 18/06/1991
6 MARTIN PAUL-DAVID 22/08/1991
8 JACQUENOD FREDERIC 27/11/1989

94

9 JACQUENOD LAURENCE 01/11/1990
14 DE-LA-RUE LAURENCE 13/12/1989
16 MARTIN ALBERT 15/08/1989

Le programme
MySQL_PDO_query_fetch_filtre_date_naissance_clients1_web.php uti-
lise un formulaire HTML5 pour contrôler la saisie du format de la date. Voici les
lignes de ce programme concernant le formulaire :

<form
action="MySQL_PDO_query_fetch_filtre_date_naissance_clients1_w
eb.php" method="post">
<fieldset>
<legend>Liste des clients dont la date de naissance est
supérieure à :</legend>

Entrez la date de naissance à partir de laquelle les clients
seront affichés à (ex: 01/01/1970) : <input type="text"
name="DateNaissance" size="10" maxlength="10" pattern="[0-
9]{2}/[0-9]{2}/[0-9]{4}" />

<input type="submit" name="valider" value="Valider le
filtrage" />
<input type="reset" value="Effacer le formulaire" />
</fieldset>
</form>

La figure 10-1.13 présente le résultat de l’exécution du programme
MySQL_PDO_query_fetch_filtre_date_naissance_clients1_web.php.

95

Figure 10-1.13
Affichage web query-fetch-filtre date-1.

HTML5 autorise le nouveau type « date » en lieu et place de « text ». Ce type

« date » permet la saisie d’une date dans un calendrier. La syntaxe suivante a été
intégrée dans le programme
MySQL_PDO_query_fetch_filtre_date_naissance_clients1b_web.php.

Entrez la date de naissance à partir de laquelle les clients
seront affichés à (ex: 01/01/1970) : <input type="date"
name="DateNaissance" size="10" maxlength="10" />

Malheureusement, au moment de la rédaction de cet ouvrage, le type « date »
n’est pas supporté par l’ensemble des navigateurs. Firefox le reconnaît comme type
« text », et ne propose aucun calendrier de saisie. Chrome propose un calendrier de
saisie, mais le format envoyé par défaut via le formulaire est noté en anglo-saxon,
ce qui provoque un échec du filtrage du programme PHP tel qu’il est écrit.

Le programme

MySQL_PDO_query_fetch_filtre_date_naissance_clients2_web.php.
utilise « datepicker » de la bibliothèque JQuery pour permettre la saisie de la date
dans un calendrier. Cette saisie est opérationnelle quelque soit le navigateur. Voici
les lignes de syntaxes qui implémentent cette saisie, avec un calendrier en français :

96

<!DOCTYPE html>
<html>
 <head> <!-- Entête HTML -->
 <meta charset="utf-8" />
 <title>Affichage de la table clients</title>
 <link href="../../CSS/MySQL.css" rel="stylesheet"
type="text/css" />
 <link rel="stylesheet"
href="//code.jquery.com/ui/1.11.4/themes/smoothness/jquery-
ui.css">
 <script src="//code.jquery.com/jquery-1.10.2.js"></script>
 <script src="//code.jquery.com/ui/1.11.4/jquery-
ui.js"></script>
 <script>
 $.datepicker.regional['fr'] = {
 closeText: 'Fermer',
 prevText: 'Précédent',
 nextText: 'Suivant',
 currentText: 'Aujourd\'hui',
 monthNames:
['Janvier','Février','Mars','Avril','Mai','Juin','Juillet','Ao
ût','Septembre','Octobre','Novembre','Décembre'],
 monthNamesShort:
['Janv.','Févr.','Mars','Avril','Mai','Juin','Juil.','Août','S
ept.','Oct.','Nov.','Déc.'],
 dayNames:
['Dimanche','Lundi','Mardi','Mercredi','Jeudi','Vendredi','Sam
edi'],
 dayNamesShort:
['Dim.','Lun.','Mar.','Mer.','Jeu.','Ven.','Sam.'],
 dayNamesMin: ['D','L','M','M','J','V','S'],
 weekHeader: 'Sem.',
 dateFormat: 'dd/mm/yy',
 firstDay: 1,
 isRTL: false,
 showMonthAfterYear: false,
 yearSuffix: ''
 };
 $.datepicker.setDefaults($.datepicker.regional['fr']);
 $(function() {
 $("#datepicker").datepicker();
 });
 </script>
 </head>
 <body>
 ...

 --

97

 -- formulaire de saisie du critère de filtrage --
 --
 -->
 <form
action="MySQL_PDO_query_fetch_filtre_date_naissance_clients2_w
eb.php" method="post">
 <fieldset>
 <legend>Liste des clients dont la date de naissance est
supérieure à :</legend>

 Entrez la date de naissance à partir de laquelle les
clients seront affichés à : <input type="text"
class="datepick" name="DateNaissance">

 <input type="submit" name="valider" value="Valider le
filtrage" />
 <input type="reset" value="Effacer le formulaire" />
 </fieldset>
 </form>
 <script type="text/javascript">
 $(document).ready(function() {
 $('.datepick').datepicker({ dateFormat: "dd/mm/yy"});
 });
 </script>
...

La figure 10-1.14 présente l’écran de saisie. Le format de la date envoyée est
bien en français JJ/MM/AAAA, le filtrage fonctionne parfaitement.

98

Figure 10-1.14
Affichage web query-fetch-filtre date-2.

Les programmes suivants présentent les versions shell et web effectuant le calcul

de l’âge à partir de la date de naissance.
• MySQL_PDO_query_fetch_calcul_age_clients_shell.php
• MySQL_PDO_query_fetch_calcul_age_clients_web.php

Voici l’exécution du programme
MySQL_PDO_query_fetch_calcul_age_clients_shell.php.

Listing 10-1.6 : Exécution de MySQL_PDO_query_fetch_calcul_age_clients_shell.php
$ php MySQL_PDO_query_fetch_calcul_age_clients_shell.php
--
 Calcul de l'âge
--
ID Nom Prenom Age Age_calculé
--
1 DUPONT JEAN 27 27
2 JACQUENOD JEAN-CHRISTOPHE 54 54
3 MURCIAN CAROLE 44 44
4 LERY JEAN-MICHEL 25 25
5 DE-LA-RUE JEAN-CHRISTOPHE 23 23

99

6 MARTIN PAUL-DAVID 23 23
7 MARTIN PIERRE 56 56
8 JACQUENOD FREDERIC 25 25
9 JACQUENOD LAURENCE 24 24
10 DUMOULIN JEAN-CHRISTOPHE 54 54
11 LABONNE-JAYAT OLIVIER 54 54
12 DE-LA-FONTAINE JEAN 110 110
13 LEVY SAMUEL 56 56
14 DE-LA-RUE LAURENCE 25 25
15 DUPONT JEAN 54 54
16 MARTIN ALBERT 25 25

la figure 10-1.15 présent le résultat de l’exécution du programme
MySQL_PDO_query_fetch_calcul_age_clients_web.php.

Figure 10-1.15
Affichage web query-fetch-filtre calcul âge.

Les jointures internes
Cette section présente des exemples de jointure interne. Les deux tables servant
de support aux jointures sont :
• clients_bancaires : contient la liste des clients ;
• comptes_bancaires : contient la liste des comptes bancaires. Un des champs

indique l’ID du propriétaire ;
Les programmes suivants sont les versions shell et web d’une jointure interne

avec la clause WHERE.
• MySQL_PDO_query_fetch_jointure_interne_where1_shell.php
• MySQL_PDO_query_fetch_jointure_interne_where1_web.php

100

Voici l’exécution du programme
MySQL_PDO_query_fetch_jointure_interne_where1_shell.php.

Listing 10-1.7 : Exécution de
MySQL_PDO_query_fetch_jointure_interne_where1_shell.php
$ php MySQL_PDO_query_fetch_jointure_interne_where1_shell.php

 Solde par compte bancaire et propriétaire

Nom Prenom libelle Solde

DUPONT JEAN Compte de dépô 750.98
DUPONT JEAN Carte débit di -115.8
DUPONT JEAN Livret A 765.32
JACQUENOD JEAN-CHRISTOPHE Compte de dépô -140.17
JACQUENOD JEAN-CHRISTOPHE Carte débit di -200
JACQUENOD JEAN-CHRISTOPHE Compte sur Liv 31.3
MURCIAN CAROLE Compte de dépô 2985.08
MURCIAN CAROLE Carte débit di -104.1
MURCIAN CAROLE Livret A 120
MURCIAN CAROLE Compte sur Liv 50
MURCIAN CAROLE Livret Jeune 298
LERY JEAN-MICHEL Compte de dépô -688.98
LERY JEAN-MICHEL Compte sur Liv 50
LERY JEAN-MICHEL Livret Jeune 500
LERY JEAN-MICHEL Livret Dév.Dur 120
DE-LA-RUE JEAN-CHRISTOPHE Compte de dépô 94.68
DE-LA-RUE JEAN-CHRISTOPHE Carte débit di -122.12
MARTIN PAUL-DAVID Compte de dépô 406.21
MARTIN PAUL-DAVID Carte débit di -200
MARTIN PIERRE Compte de dépô 1790.22
MARTIN PIERRE Carte débit di -555.66
JACQUENOD FREDERIC Compte de dépô 394.87
JACQUENOD FREDERIC Carte débit di -552.87
JACQUENOD FREDERIC Livret A 590.98
JACQUENOD LAURENCE Compte de dépô -679.08
JACQUENOD LAURENCE Carte débit di -276.21
JACQUENOD LAURENCE Livret A 200
JACQUENOD LAURENCE Compte sur Liv 52.11
JACQUENOD LAURENCE Livret Jeune 400
JACQUENOD LAURENCE Livret Dév.Dur 100
DUMOULIN JEAN-CHRISTOPHE Compte de dépô -2186.86
DUMOULIN JEAN-CHRISTOPHE Carte débit di 0
LABONNE-JAYAT OLIVIER Compte de dépô 234.02
LABONNE-JAYAT OLIVIER Carte débit di -300
DE-LA-FONTAINE JEAN Compte de dépô 1825.54
LEVY SAMUEL Compte de dépô 12.09
LEVY SAMUEL Carte débit di -212.98

101

LEVY SAMUEL Livret A 432.76
DE-LA-RUE LAURENCE Compte de dépô 275.7
DE-LA-RUE LAURENCE Carte débit di -104.1
DE-LA-RUE LAURENCE Livret A 1032.47
DE-LA-RUE LAURENCE Compte sur Liv 31.3
DE-LA-RUE LAURENCE Livret Jeune 818.38
DE-LA-RUE LAURENCE Livret Dév.Dur 82.23
DUPONT JEAN Compte de dépô 4572.1
DUPONT JEAN Carte débit di -2987.65
DUPONT JEAN Livret A 2500
DUPONT JEAN Compte sur Liv 5628.34
DUPONT JEAN Livret Jeune 1600
DUPONT JEAN Livret Dév.Dur 1002.11
MARTIN ALBERT Compte de dépô 363.49
MARTIN ALBERT Carte débit di -150

La figure 10-1.16 présente le résultat de l’exécution du programme
MySQL_PDO_query_fetch_jointure_interne_where1_web.php. Seules les
premières lignes de l’affichage sont présentées.

102

Figure 10-1.16
Affichage web query-fetch-jointure interne where-1.

Les programmes suivants présentent les versions shell et web effectuant la join-

ture interne avec la clause WHERE pour afficher le solde total de chaque client.
• MySQL_PDO_query_fetch_jointure_interne_where2_shell.php
• MySQL_PDO_query_fetch_jointure_interne_where2_web.php

Voici l’exécution du programme
MySQL_PDO_query_fetch_jointure_interne_where2_shell.php.

Listing 10-1.8 : Exécution de
MySQL_PDO_query_fetch_jointure_interne_where2_shell.php
$ php MySQL_PDO_query_fetch_jointure_interne_where2_shell.php
--
 Solde total par propriétaire

103

--
ID_Clt Nom Prenom Solde_Total
--
1 DUPONT JEAN 1400.50
2 JACQUENOD JEAN-CHRISTOPHE -308.87
3 MURCIAN CAROLE 3348.98
4 LERY JEAN-MICHEL -18.98
5 DE-LA-RUE JEAN-CHRISTOPHE -27.44
6 MARTIN PAUL-DAVID 206.21
7 MARTIN PIERRE 1234.56
8 JACQUENOD FREDERIC 432.98
9 JACQUENOD LAURENCE -203.18
10 DUMOULIN JEAN-CHRISTOPHE -2186.86
11 LABONNE-JAYAT OLIVIER -65.98
12 DE-LA-FONTAINE JEAN 1825.54
13 LEVY SAMUEL 231.87
14 DE-LA-RUE LAURENCE 2135.98
15 DUPONT JEAN 12314.90
16 MARTIN ALBERT 213.49

La figure 10-1.17 présente le résultat de l’exécution du programme
MySQL_PDO_query_fetch_jointure_interne_where2_web.php.

Figure 10-1.17
Affichage web query-fetch-jointure interne where-2.

La jointure des syntaxes précédentes utilisait la clause WHERE afin de faciliter la

compréhension, puisque cette clause avait déjà été présentée. La jointure avec la
clause WHERE est devenue obsolète, même si elle fonctionne parfaitement. Il faut
maintenant utiliser la syntaxe INNER JOIN. La réécriture de la requête SQL :

104

SELECT cb.ID_Clt,cl.Nom,cl.Prenom,ROUND(SUM(cb.Solde),2)
Solde_Total FROM comptes_bancaires cb,clients_bancaires cl
WHERE cb.ID_Clt=cl.ID_Clt GROUP BY cb.ID_Clt;

Se note :

SELECT cb.ID_Clt,cl.Nom,cl.Prenom,ROUND(SUM(cb.Solde),2)
Solde_Total FROM comptes_bancaires cb INNER JOIN
clients_bancaires cl ON cb.ID_Clt=cl.ID_Clt GROUP BY
cb.ID_Clt;

Les programmes suivants présentent les versions shell et web effectuant la join-
ture interne avec la clause INNER JOIN pour afficher le solde total de chaque
client.
• MySQL_PDO_query_fetch_jointure_interne_inner_join_shell.php
• MySQL_PDO_query_fetch_jointure_interne_inner_join_web.php

Ils affichent le même résultat que les deux programmes précédents.
Les jointures externes
Cette section présente des exemples de jointure externe. Les programmes suivants
sont les versions shell et web effectuant la jointure externe avec la clause LEFT
JOIN pour afficher le solde total de chaque compte, y compris ceux qui n’ont pas
de propriétaire connu dans la table des clients.
• MySQL_PDO_query_fetch_jointure_externe_left_join_shell.php
• MySQL_PDO_query_fetch_jointure_externe_left_join_web.php

Voici l’exécution du programme
MySQL_PDO_query_fetch_jointure_externe_left_join_shell.php.

Le compte ayant le propriétaire le client N°26 apparaît, alors qu’il est inconnu
dans la table des clients.

Listing 10-1.9 : Exécution de
MySQL_PDO_query_fetch_jointure_externe_left_join_shell.php
$ php
MySQL_PDO_query_fetch_jointure_externe_left_join_shell.php

 Solde total par propriétaire, pour tous les clients

ID_Clt Nom Prenom Solde_Total

1 DUPONT JEAN 1400.50
2 JACQUENOD JEAN-CHRISTOPHE -308.87
3 MURCIAN CAROLE 3348.98
4 LERY JEAN-MICHEL -18.98
5 DE-LA-RUE JEAN-CHRISTOPHE -27.44
6 MARTIN PAUL-DAVID 206.21
7 MARTIN PIERRE 1234.56

105

8 JACQUENOD FREDERIC 432.98
9 JACQUENOD LAURENCE -203.18
10 DUMOULIN JEAN-CHRISTOPHE -2186.86
11 LABONNE-JAYAT OLIVIER -65.98
12 DE-LA-FONTAINE JEAN 1825.54
13 LEVY SAMUEL 231.87
14 DE-LA-RUE LAURENCE 2135.98
15 DUPONT JEAN 12314.90
16 MARTIN ALBERT 213.49
26 345.29

La figure 10-1.18 présente le résultat de l’exécution du programme
MySQL_PDO_query_fetch_jointure_externe_left_join_web.php.

Figure 10-1.18
Affichage web query-fetch-jointure externe left join.

Les programmes suivants sont les versions shell et web effectuant la jointure ex-

terne avec la clause RIGHT JOIN pour afficher le solde total de chaque client, y
compris ceux qui n’ont pas aucun compte.
• MySQL_PDO_query_fetch_jointure_externe_right_join_shell.php
• MySQL_PDO_query_fetch_jointure_externe_right_join_web.php

Voici l’exécution du programme
MySQL_PDO_query_fetch_jointure_externe_right_join_shell.php.

Le client N°17, JACQUES ROUSSE, apparaît alors qu’il n’a aucun compte dans
la table des comptes bancaires.

MySQL_PDO_query_fetch_jointure_externe_right_join_shell.php
$ php
MySQL_PDO_query_fetch_jointure_externe_right_join_shell.php

106

 Solde total par client, pour tous les clients

ID_Clt Nom Prenom Solde_Total

1 DUPONT JEAN 1400.50
2 JACQUENOD JEAN-CHRISTOPHE -308.87
3 MURCIAN CAROLE 3348.98
4 LERY JEAN-MICHEL -18.98
5 DE-LA-RUE JEAN-CHRISTOPHE -27.44
6 MARTIN PAUL-DAVID 206.21
7 MARTIN PIERRE 1234.56
8 JACQUENOD FREDERIC 432.98
9 JACQUENOD LAURENCE -203.18
10 DUMOULIN JEAN-CHRISTOPHE -2186.86
11 LABONNE-JAYAT OLIVIER -65.98
12 DE-LA-FONTAINE JEAN 1825.54
13 LEVY SAMUEL 231.87
14 DE-LA-RUE LAURENCE 2135.98
15 DUPONT JEAN 12314.90
16 MARTIN ALBERT 213.49
17 ROUSSE JACQUES

La figure 10-1.19 présente le résultat de l’exécution du programme
MySQL_PDO_query_fetch_jointure_externe_right_join_web.php.

Figure 10-1.19
Affichage web query-fetch-jointure externe right join.

Le mode transactionnel avec MySQL et PDO

107

Principe
Les transactions MySQL sécurisent l’exécution d’un groupe de requêtes en re-
venant à l’état d’origine en cas de problème sur une des requêtes du groupe. En cas
de succès de l’ensemble des requêtes, la validation de la transaction applique les
changements de manière définitive. De plus, un mécanisme de verrouillage interdit
la modification par un processus tierce, des éléments en cours de traitement par la
transaction.

C’est l’exemple du traitement d’un virement bancaire, composé de deux opéra-
tions, le débit du compte initial et le crédit du compte cible, qui doit être validé ou
annulé globalement.

L’annulation de la transaction et le retour à l’état d’origine se nomme « rool-
back ». La validation finale correspond à l’action de « commit ».

Le mode transactionnel est supporté par le moteur InnoDB de MySQL.

Les fonctions
Les méthodes de la classe PDO qui mettent en œuvre le mode transactionnel sont :
• beginTransaction() : cette méthode démarre une nouvelle transaction. Elle

désactive le mode « autocommit ». Dès la désactivation de « autocommit »,
toutes les modifications sont gardées en mémoire, rien n’est réellement appliqué
sur les tables (pas d’écriture sur disque). Elle retourne TRUE en cas de succès et
FALSE si une erreur survient.

• commit() : cette méthode termine la transaction en validant les modifications.
Les données sont écrites sur disque. Elle remet la connexion en « autocommit ».
Cette méthode retourne TRUE en cas de succès et FALSE en cas d’erreur. Une
exception PDOExeption est lancée en cas d’erreur, par exemple si aucune tran-
saction n’est active.

• rollback() : cette méthode termine la transaction en annulant les modifica-
tions. Rien n’est écrit sur disque. Elle remet la connexion en « autocommit ».
Elle retourne TRUE en cas de succès et FALSE en cas d’erreur. Une exception
PDOExeption est lancée en cas d’erreur, par exemple si aucune transaction n’est
active.

• PDO ne vérifie le support du mode transactionnel qu’au niveau du pilote qui accède à la
base. Si certaines conditions particulières empêchent le fonctionnement des transactions,
beginTransaction retournera tout de même TRUE sans erreur, si le démarrage de la
transaction est accepté. Cela se produira par exemple quand le moteur MylSAM est utili-
sé pour des tables. À la fin du programme PHP, toute transaction ouverte par beginTran-
saction() qui n’a pas été fermée par commit() ou rollback() sera annulée automatique-
ment (roolback).

Les syntaxes
Nous présentons deux variations syntaxiques « simplifiées » de ces trois fonctions :

108

• Avec utilisation de la méthode query() pour effectuer les modifications. Cette
fonction ne sécurise pas la requête ;

• Puis avec la méthode prepare(), qui sécurise la requête via les requêtes prépa-
rées.

Avec des requêtes standards
Nous utilisons la table « comptes_bancaires » pour effectuer un virement entre
deux comptes. Dans cet exemple le compte ayant l’ID N°4 est débité de 100 €, et le
compte ayant l’ID N°7 est crédité de 100 €.

$MtVirt=100 ;
$NumCptDebit=4 ;
$NumCptCredit=7 ;
try { // -- Connexion de la base de données --
 $bdd = new
PDO($TYPE_DBB.":host=".$SERVEUR.";dbname=".$BASEDD,$LOGIN_ADM,
 $MDP_ADM, array(PDO::ATTR_PERSISTENT => true));
 // -- Initialisation des Exceptions PDO pour prepare --
 $bdd->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 // -- Définition du codage en UTF8 --
 $bdd->exec("SET CHARACTER SET utf8");
 // -- On débute la transaction --
 $bdd->beginTransaction();
 //-- On débite le compte --
 $requete_debit='UPDATE comptes_bancaires SET Solde=Solde-
'.$MtVirt.' WHERE Id_Cpt='.$NumCptDebit;
 $reponse = $bdd->query($requete_debit);
 // -- Fermeture de la requête --
 $reponse->closeCursor();
 //-- On crédite le compte --
 $requete_credit='UPDATE comptes_bancaires SET
Solde=Solde+'.$MtVirt.' WHERE Id_Cpt='.$NumCptCredit;
 $reponse = $bdd->query($requete_credit);
 // -- Fermeture de la requête --
 $reponse->closeCursor();
 // -- Si aucune erreur, on valide la transaction --
 $reponse = $bdd->commit();
}
catch(Exception $e) {
 // -- On annule la transaction --
 $bdd->rollback();
 // -- On affiche un message d'erreur --
 echo 'Problème sur le virement - Transaction
annulée'.PHP_EOL;
 echo $e->getMessage().PHP_EOL;
}

109

Avec des requêtes préparées
Voici le même virement avec les requêtes préparées :

$MtVirt = 100 ;
$NumCptDebit = 4 ;
$NumCptCredit = 7 ;
try { // -- Connexion de la base de données --
 $bdd = new
PDO($TYPE_DBB.":host=".$SERVEUR.";dbname=".$BASEDD,$LOGIN_ADM,
 $MDP_ADM, array(PDO::ATTR_PERSISTENT => true));
 // -- Initialisation des Exceptions PDO pour prepare --
 $bdd->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 // -- Définition du codage en UTF8 --
 $bdd->exec("SET CHARACTER SET utf8");
 // -- On gère le virement dans une transaction SQL --
 // -- On débute la transaction --
 $bdd->beginTransaction();
 // -- On débite le compte --
 // -- Préparation de la requête --
 $requete_sql='UPDATE comptes_bancaires SET
Solde=Solde+:MontantVir WHERE Id_Cpt=:NumCptOperation';
 $reponse = $bdd->prepare($requete_sql);
 // -- Liaison avec les paramètres --
 $reponse->bindParam(':MontantVir', $MontantVir);
 $reponse->bindParam(':NumCptOperation', $NumCptOperation,
PDO::PARAM_INT);
 // -- Affectation des valeurs pour les paramètres --
 $MontantVir = -$MtVirt ;
 $NumCptOperation = $NumCptDebit ;
 // -- Exécution de la requête --
 $reponse->execute();
 // -- Fermeture de la requête --
 $reponse->closeCursor();
 // -- On crédite le compte --
 // -- La requête est déjà préparée, elle ne change pas --
 // -- Paramètres déjà liés (bind) pas de changement --
 // -- Affectation des valeurs pour les paramètres --
 $MontantVir = +$MtVirt ;
 $NumCptOperation = $NumCptCredit ;
 // -- Exécution de la requête --
 $reponse->execute();
 // -- Fermeture de la requête --
 $reponse->closeCursor();
 // -- Si aucune erreur, on valide la transaction --
 $reponse = $bdd->commit();
}
catch(Exception $e) {
// -- On annule la transaction --

110

 $bdd->rollback();
 // -- On affiche un message d'erreur --
 echo 'Problème sur le virement - Transaction
annulée'.PHP_EOL;
 echo $e->getMessage().PHP_EOL;
}

Exemples

En shell
Le programme MySQL_PDO_transaction_secure_prepare_shell.php met en
œuvre un virement entre deux comptes bancaires. Il utilise les tables
comptes_bancaires et clients_bancaires avec une jointure interne pour pré-
senter la liste des comptes avec le nom et le prénom de leur propriétaire. Il effectue
un virement entre deux comptes sélectionnés dans la liste des comptes de dépôts.

Ce programme utilise les fonctions suivantes :
• Affiche_Etat_Comptes() : cette procédure affiche la liste de tous les

comptes de dépôts de la table comptes_bancaires. Elle effectue la jointure in-
terne entre les tables comptes_bancaires et clients_bancaires pour affi-
cher les noms et les prénoms des propriétaires des comptes. Elle appelle Affi-
chage_Liste_Comptes() pour la présentation ;

• Saisie_Numero_Compte_Valide() : cette fonction boucle sur la saisie d’un
numéro de compte valide. Elle est utilisée pour saisir les numéros des deux
comptes : le compte à débiter et le compte à créditer ;

• Virement() : cette fonction effectue le virement et utilise le mode transaction-
nel de MySQL.

• Info_Compte() : cette fonction récupère les informations d’un seul compte
bancaire dans la table comptes_bancaires.

• Affichage_Liste_Comptes() : cette procédure « outil » affiche l’état des
comptes du tableau passé en argument. Elle est appelée par Af-
fiche_Etat_Comptes(), mais également deux fois, avant le virement pour
présenter les deux comptes sur lesquels le virement est effectué, et après celui-ci
pour confirmer le traitement.

Listing 10-1.10 : Programme MySQL_PDO_transaction_secure_prepare_shell.php
<?php
 include '../../INCLUDE/MySQL_include_param_dbb.php';
 $ERR_TRAIT=false;
 // -- On affiche l'état des comptes AVANT la transaction --
 $Tab_Tous_les_Comptes=Affiche_Etat_Comptes("Etat des comptes
AVANT le virement");
 // -- On récupère la colonne des ID_Cpt --

111

 if (!$ERR_TRAIT)
 {

$Tab_Colonne_IDCpt=array_column($Tab_Tous_les_Comptes,'ID_Cpt'
);
 // -- Initialisation des infos sur les comptes --
 $Infos_Cpt_Debit =array();
 $Infos_Cpt_Credit=array();
 // -- Saisie du numéro de compte à débiter --
 $Num_Cpt_Debit=Saisie_Numero_Compte_Valide('Debit');
 // -- Saisie du numéro de compte à créditer --
 $Num_Cpt_Credit=Saisie_Numero_Compte_Valide('Credit');
 // -- Saisie du montant du virement --
 echo "Montant du débit : ";
 fscanf(STDIN,"%s",$Montant_Virement_saisi) ;
 // -- Post traitement du montant du virement --

$Montant_Virement_saisi=str_replace(",",".",$Montant_Virement_
saisi);
 $Montant_Virement=floatval($Montant_Virement_saisi);

$Montant_Virement_formate=number_format($Montant_Virement,2,",
"," ")." €";
 // -- Affichage avant confirmation --
 $Tab_deux_comptes[0]=$Infos_Cpt_Debit;
 $Tab_deux_comptes[1]=$Infos_Cpt_Credit;
 Affichage_Liste_Comptes("Résumé : Virement de
$Montant_Virement_formate, du compte $Num_Cpt_Debit -> le
compte $Num_Cpt_Credit",$Tab_deux_comptes);
 // -- Demande de confirmation --
 echo "Confirmez le virement (o/n) : ";
 fscanf(STDIN,"%s",$ConfirmationVirement);
 if ($ConfirmationVirement == "o")
 {
 // == On gère le virement dans une transaction SQL ==

$virementOK=Virement($Num_Cpt_Debit,$Num_Cpt_Credit,$Montant_V
irement);
 // ---
 if ($virementOK)
 {
 // -- On affiche le résultat du virement --
 $Tab_deux_comptes[0]=Info_Compte($Num_Cpt_Debit);
 $Tab_deux_comptes[1]=Info_Compte($Num_Cpt_Credit);
 if (!$ERR_TRAIT)
 Affichage_Liste_Comptes("Résultat : Virement de
$Montant_Virement_formate, du compte $Num_Cpt_Debit -> le
compte $Num_Cpt_Credit",$Tab_deux_comptes);

112

 }
 }
 }
 // ************** Sous-programmes ******************
 // ==
 // -- Fonction d'affichage de l'état de tous les comptes --
 // ==
 function Affiche_Etat_Comptes($texte)
 {
 global
$ERR_TRAIT,$TYPE_DBB,$SERVEUR,$BASEDD,$TABLEPERSONNES,$LOGIN_A
DM,$MDP_ADM;
 try {
 // -- Contexte pour le message d'erreur --
 $contexte="Connexion base de données";
 // -- Connexion de la base de données --
 $bdd = new
PDO($TYPE_DBB.":host=".$SERVEUR.";dbname=".$BASEDD,$LOGIN_ADM,
$MDP_ADM,
 array(PDO::ATTR_PERSISTENT => true));
 // -- Définition du codage en UTF8 --
 $bdd->exec("SET CHARACTER SET utf8");
 // -- Initialisation des Exceptions PDO pour prepare --
 $bdd->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 // -- Limitation aux comptes de dépôt --
 $type_compte="Compte_Dépôts";
 // -- On affiche les comptes courant Avant le virement --
 // -- Contexte pour le message d'erreur --
 $contexte="Problème de requête";
 // -- Préparation de la requête --
 $requete_sql='SELECT
cb.ID_Cpt,cb.Agence,cb.Numero,cb.Type,cl.Nom,cl.Prenom,ROUND(c
b.Solde,2) Solde_Compte FROM comptes_bancaires cb INNER JOIN
clients_bancaires cl ON cb.ID_Clt=cl.ID_Clt WHERE
Type=:type_compte';
 $RequetePreparee = $bdd->prepare($requete_sql);
 // -- Liaison avec les paramètres --
 $RequetePreparee->bindParam(':type_compte', $type_compte);
 // -- Exécution de la requête --
 $RequetePreparee->execute();
 // -- Retourne un tableau associatif --
 $RequetePreparee->setFetchMode(PDO::FETCH_ASSOC);
 // -- Boucle de traitement de chaque client --
 $Tab_Comptes=$RequetePreparee->fetchAll();
 // -- Conversion de la colonne solde au format français --
 foreach ($Tab_Comptes as $Num => $un_cpt)
 {

113

$un_cpt['Solde_Compte']=number_format($un_cpt['Solde_Compte'],
2,","," ")." €";
 $Tab_Comptes[$Num]=$un_cpt;
 }
 // -- Affichage des données retournées --
 Affichage_Liste_Comptes($texte,$Tab_Comptes);
 // -- Fermeture de la requête --
 $RequetePreparee->closeCursor();
 return $Tab_Comptes;
 }
 catch(Exception $e)
 {
 echo $contexte.' : '.$e->getMessage().PHP_EOL;
 $ERR_TRAIT=true;
 }
 }
 // ==
 // -- Fonction de saisie d'un numéro de compte --
 // ==
 function Saisie_Numero_Compte_Valide($type_saisie)
 {
 global
$Infos_Cpt_Debit,$Infos_Cpt_Credit,$Tab_Colonne_IDCpt,$Tab_Tou
s_les_Comptes;
 $Infos_Cpt_xxx=array();
 if ($type_saisie == "Debit") $Texte_Action="à débiter ";
 else $Texte_Action="à créditer";
 // -- Boucle de saisie --
 while (count($Infos_Cpt_xxx) == 0)
 {
 echo "Numéro du compte ".$Texte_Action." : ";
 fscanf(STDIN,"%d",$Num_Cpt) ;
 // -- On récupère l'indice numérique de la case --
 $numcase=array_search($Num_Cpt,$Tab_Colonne_IDCpt);
 // -- array_search() retourne le numéro de la case --
 // -- du tableau ou bien false en cas d'échec --
 // -- attention il faut utiliser le triple = afin de --
 // -- résoudre le problème de la donnée trouvée dans --
 // -- la case 0 valeur qui peut être interprétée comme --
 // -- false si le test est noté : if (!$numcase) --
 if ($numcase == false)
 echo "Compte $Num_Cpt inexistant !".PHP_EOL;
 else
 {
 $Infos_Cpt_xxx=$Tab_Tous_les_Comptes[$numcase];
 if ($type_saisie == "Debit")
 $Infos_Cpt_Debit=$Infos_Cpt_xxx;

114

 else
 $Infos_Cpt_Credit=$Infos_Cpt_xxx;
 }
 }
 return $Num_Cpt;
 }
 // ==========================
 // -- Fonction de virement --
 // ==========================
 function Virement($NumCptDebit,$NumCptCredit,$MtVirt)
 {
 global
$TYPE_DBB,$SERVEUR,$BASEDD,$TABLEPERSONNES,$LOGIN_ADM,$MDP_ADM
;
 $virement_effectue=true;
 $ConnexionBDD=false;
 $TransactionDemarree=false;
 try
 {
 // -- Contexte pour le message d'erreur --
 $contexte="Connexion base de données";
 // -- Connexion de la base de données --
 $bdd = new
PDO($TYPE_DBB.":host=".$SERVEUR.";dbname=".$BASEDD,$LOGIN_ADM,
$MDP_ADM,
 array(PDO::ATTR_PERSISTENT => true));
 $ConnexionBDD=true;
 // -- Initialisation des Exceptions PDO pour prepare --
 $bdd->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 // -- Définition du codage en UTF8 --
 $bdd->exec("SET CHARACTER SET utf8");
 // -- On gère le virement dans une transaction SQL --
 // ==============================
 // == On débute la transaction ==
 // ==============================
 // -- Contexte pour le message d'erreur --
 $contexte="Initialisation virement";
 $bdd->beginTransaction();
 $TransactionDemarree=true;
 // =========================
 // == On débite le compte ==
 // =========================
 // -- Contexte pour le message d'erreur --
 $contexte="Débit du compte" ;
 // -- Préparation de la requête --
 $requete_sql='UPDATE comptes_bancaires SET
Solde=Solde+:MontantVir WHERE Id_Cpt=:NumCptOperation';

115

 $reponse = $bdd->prepare($requete_sql);
 // -- Liaison avec les paramètres --
 $reponse->bindParam(':MontantVir', $MontantVir);
 $reponse->bindParam(':NumCptOperation', $NumCptOperation,
PDO::PARAM_INT);
 // -- Affectation des valeurs pour les paramètres --
 $MontantVir = -$MtVirt ;
 $NumCptOperation = $NumCptDebit ;
 // -- Exécution de la requête --
 $reponse->execute();
 // -- Fermeture de la requête --
 $reponse->closeCursor();
 // ==========================
 // == On crédite le compte ==
 // ==========================
 // -- Contexte pour le message d'erreur --
 $contexte="Crédit du compte";
 // -- La requête est déjà préparée, elle ne change pas --
 // -- les paramètres sont déjà liés (bind) ils ne changent
pas --
 // -- Affectation des valeurs pour les paramètres --
 $MontantVir = +$MtVirt ;
 $NumCptOperation = $NumCptCredit ;
 // -- Exécution de la requête --
 $reponse->execute();
 // -- Fermeture de la requête --
 $reponse->closeCursor();
 // ==============================
 // == On valide la transaction ==
 // ==============================
 // -- Si aucune erreur, on valide la transaction --
 $contexte="Validation virement";
 $reponse = $bdd->commit();
 // -- On confirme le virement --
 echo 'Virement effectué !'.PHP_EOL;
 }
 catch(Exception $e)
 {
 // ==============================
 // == On annule la transaction ==
 // ==============================
 if ($ConnexionBDD && $TransactionDemarree)
 {
 try
 {
 $bdd->rollback();
 }
 catch(Exception $er)

116

 {
 // -- On affiche un message d'erreur --
 echo 'Problème sur le virement - Transaction
annulée'.PHP_EOL;
 echo 'Annulation : '.$er->getMessage().PHP_EOL;
 $virement_effectue=false;
 }
 }
 // -- On affiche un message d'erreur --
 echo 'Problème sur le virement - Transaction
annulée'.PHP_EOL;
 echo $contexte.' : '.$e->getMessage().PHP_EOL;
 $virement_effectue=false;
 }
 return $virement_effectue;
 }
 // ===
 // -- Fonction d'information de l'état d'un seul compte --
 // ===
 function Info_Compte($compte)
 {
 global
$ERR_TRAIT,$TYPE_DBB,$SERVEUR,$BASEDD,$TABLEPERSONNES,$LOGIN_A
DM,$MDP_ADM;
 try
 {
 // -- Contexte pour le message d'erreur --
 $contexte="Connexion base de données";
 // -- Connexion de la base de données --
 $bdd = new
PDO($TYPE_DBB.":host=".$SERVEUR.";dbname=".$BASEDD,$LOGIN_ADM,
$MDP_ADM,
 array(PDO::ATTR_PERSISTENT => true));
 // -- Définition du codage en UTF8 --
 $bdd->exec("SET CHARACTER SET utf8");
 // -- Initialisation des Exceptions PDO pour prepare --
 $bdd->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 $contexte="Problème de requête sur la table";
 // -- Préparation de la requête --
 $requete_sql='SELECT
cb.ID_Cpt,cb.Agence,cb.Numero,cb.Type,cl.Nom,cl.Prenom,ROUND(c
b.Solde,2) Solde_Compte FROM comptes_bancaires cb INNER JOIN
clients_bancaires cl ON cb.ID_Clt=cl.ID_Clt WHERE
ID_Cpt=:compte';
 $RequetePreparee = $bdd->prepare($requete_sql);
 // -- Liaison avec les paramètres --

117

 $RequetePreparee->bindParam(':compte', $compte,
PDO::PARAM_INT);
 // -- Exécution de la requête --
 $RequetePreparee->execute();
 // -- Retourne un tableau associatif --
 $RequetePreparee->setFetchMode(PDO::FETCH_ASSOC);
 // -- Boucle de traitement de chaque client --
 $Tab_Infos_Cpt=$RequetePreparee->fetchAll();
 // -- Conversion de la colonne solde au format français --
 foreach ($Tab_Infos_Cpt as $Num => $un_cpt)
 {

$un_cpt['Solde_Compte']=number_format($un_cpt['Solde_Compte'],
2,","," ")." €";
 $Tab_Infos_Cpt[$Num]=$un_cpt;
 }
 $Tab_Infos_Un_Cpt=$Tab_Infos_Cpt[0];
 return $Tab_Infos_Un_Cpt;
 }
 catch(Exception $e)
 {
 echo $contexte.' : '.$e->getMessage().PHP_EOL;
 $ERR_TRAIT=true;
 }
 }
 // =====================================
 // -- Fonction d'affichage du tableau --
 // =====================================
 function Affichage_Liste_Comptes($texte,$tab_mixte)
 {
 if (count($tab_mixte)==0)
 echo 'Aucun élément à afficher.';
 else
 {
 // -- Affichage entête du tableau --
 reset($tab_mixte);
 $un_compte=current($tab_mixte);
 $liste_champs=array_keys($un_compte);
 echo "---
----------------------------------".PHP_EOL;
 echo " $texte".PHP_EOL;
 echo "---
----------------------------------".PHP_EOL;
 foreach($liste_champs as $nom_champ)
 {
 if ($nom_champ == "ID_Cpt")
 fprintf(STDOUT,"%6s|",$nom_champ);
 else if ($nom_champ == "Agence")

118

 fprintf(STDOUT," %-6s|",$nom_champ);
 else if ($nom_champ == "Numero")
 fprintf(STDOUT," %-8s|",$nom_champ);
 else if ($nom_champ == "Type")
 fprintf(STDOUT," %-12s|",$nom_champ);
 else if ($nom_champ == "Nom")
 fprintf(STDOUT," %-15s|",$nom_champ);
 else if ($nom_champ == "Prenom")
 fprintf(STDOUT," %-16s|",$nom_champ);
 else if ($nom_champ == "Solde_Compte")
 fprintf(STDOUT,"%-11s|",$nom_champ);
 else
 echo "$nom_champ\t";
 }
 echo PHP_EOL;
 echo "---
----------------------------------".PHP_EOL;
 // -- boucle de traitement de chaque compte --
 foreach ($tab_mixte as $un_compte)
 {
 // -- On affiche le contenu des champs --
 foreach($liste_champs as $nom_champ)
 {
 if ($nom_champ == "ID_Cpt")
 fprintf(STDOUT,"%5s|",$un_compte[$nom_champ]);
 else if ($nom_champ == "Agence")
 fprintf(STDOUT," %-6s|",$un_compte[$nom_champ]);
 else if ($nom_champ == "Numero")
 fprintf(STDOUT," %-8s|",$un_compte[$nom_champ]);
 else if ($nom_champ == "Type")
 fprintf(STDOUT,"%-13s|",$un_compte[$nom_champ]);
 else if ($nom_champ == "Nom")
 fprintf(STDOUT," %-15s|",$un_compte[$nom_champ]);
 else if ($nom_champ == "Prenom")
 fprintf(STDOUT," %-16s|",$un_compte[$nom_champ]);
 else if ($nom_champ == "Solde_Compte")
 fprintf(STDOUT,"%13s|",$un_compte[$nom_champ]);
 else
 echo $un_compte[$nom_champ]."\t";
 }
 echo PHP_EOL;
 }
 echo "---
----------------------------------".PHP_EOL;
 }
 }
?>

119

Voici un exemple d’exécution. Les saisies et les comptes sur lesquels porte le vi-
rement sont en gras :

Listing 10-1.11 : Exécution de MySQL_PDO_transaction_secure_prepare_shell.php
$ php MySQL_PDO_transaction_secure_prepare_shell.php
--
 Etat des comptes AVANT le virement
--
ID_Cpt|Agence|Numero|Type |Nom |Prenom| Solde_Compte|
--
 1|00602|165143P|Compte_Dépôts|DUPONT |JEAN | 750,98€|
 4|00523|025123R|Compte_Dépôts|JACQUENOD|JEAN-CH| -140,17€|
 7|00602|154123P|Compte_Dépôts|MURCIAN |CAROLE | 2 985,08€|
 12|00521|032154P|Compte_Dépôts|LERY |JEAN-MI| -688,98€|
 16|00523|123456J|Compte_Dépôts|DE-LA-RUE|JEAN-CH| 94,68€|
 18|00523|615243H|Compte_Dépôts|MARTIN |PAUL-DA| 406,21€|
 20|00521|062332P|Compte_Dépôts|MARTIN |PIERRE | 1 790,22€|
 22|00521|889261D|Compte_Dépôts|JACQUENOD|FREDERI| 394,87€|
 25|00521|545823Z|Compte_Dépôts|JACQUENOD|LAURENC| -679,08€|
 31|00523|823452N|Compte_Dépôts|DUMOULIN |JEAN-CH|-2 186,86€|
 33|00523|238245E|Compte_Dépôts|LABONNE-J|OLIVIER| 234,02€|
 35|00602|458263T|Compte_Dépôts|DE-LA-FON|JEAN | 1 825,54€|
 36|00523|904161A|Compte_Dépôts|LEVY |SAMUEL | 12,09€|
 39|00521|045123P|Compte_Dépôts|DE-LA-RUE|LAUREN | 275,70€|
 45|00523|987123P|Compte_Dépôts|DUPONT |JEAN | 4 572,10€|
 51|00602|004452N|Compte_Dépôts|MARTIN |ALBERT | 363,49€|

Numéro du compte à débiter : 7
Numéro du compte à créditer : 4
Montant du débit : 185,08
--
 Résumé : Virement de 185,08 €, du compte 7 -> le compte 4
--
ID_Cpt|Agence|Numero|Type |Nom |Prenom| Solde_Compte|
--
 7|00602|154123P|Compte_Dépôts|MURCIAN |CAROLE | 2 985,08€|
 4|00523|025123R|Compte_Dépôts|JACQUENOD|JEAN-CH| -140,17€|
--
Confirmez le virement (o/n) : o
Virement effectué !
--
 Résultat : Virement de 185,08 €, du compte 7 -> le compte 4
--
ID_Cpt|Agence|Numero|Type |Nom |Prenom| Solde_Compte|
--
 7|00602|154123P|Compte_Dépôts|MURCIAN |CAROLE | 2 800,00€|
 4|00523|025123R|Compte_Dépôts|JACQUENOD|JEAN-CH| 44,91€|

120

--

Pour le web
Le programme MySQL_PDO_transaction_nosecure_query_shell.php est la
version non sécurisée, utilisant la méthode query() à la place de la méthode pre-
pare(). Le programme MySQL_PDO_transaction_secure_prepare_web.php
est la version web du programme
MySQL_PDO_transaction_secure_prepare_shell.php. Voici un exemple
d’exécution :

La figure 10-1.20 présente le premier écran qui affiche la liste des comptes, et un
formulaire de saisie du numéro du compte à débiter, du numéro du compte à crédi-
ter et du montant du virement.

Figure 10-1.20
Virement : écran de saisie.

La figure 10-1.21 présente l’écran suivant qui affiche l’état des comptes avant le

virement, et demande une confirmation :

121

Figure 10-1.21
Virement : état des comptes sélectionnés avant virement

La figure 10-1.22 présente l’écran qui confirme la validation du virement et af-

fiche l’état des comptes après le traitement.

Figure 10-1.22
Virement : état des comptes sélectionnés après virement

Voici le programme MySQL_PDO_transaction_secure_prepare_web.php :

Listing 10-1.12 : Programme MySQL_PDO_transaction_secure_prepare_web.php
<?php
// On démarre la session AVANT d'écrire du code HTML
// pour les variables de session
session_start();
include
'INCLUDE/MySQL_PDO_transaction_include_sprog_commun_web.php';
include 'INCLUDE/MySQL_PDO_transaction_include_param_dbb.php';
?>
<!DOCTYPE html>
<html>
 <head> <!-- Entête HTML -->
 <meta charset="utf-8" />
 <title>Virement bancaire</title>
 <link href="CSS/MySQL_PDO_transaction.css"
rel="stylesheet" type="text/css" />
 </head>
 <body>
 <?php
 $ERR_TRAIT=false;
 // -------------------------

122

 // -- Début du traitement --
 // ------------------------
 // --
 // Page appelée de plusieurs manières différentes
 // --
 if (!empty($_POST['confirmation_virement']))
 {
 if (isset($_POST['RepVir'])) $ConfirmationVirement =
$_POST['RepVir'] ;
 else $ConfirmationVirement = 'non' ;
 if ($ConfirmationVirement == "oui")
 {
 $Num_Cpt_Debit = $_SESSION['Num_Cpt_Debit'] ;
 $Num_Cpt_Credit = $_SESSION['Num_Cpt_Credit'] ;
 $Montant_Virement_formate =
$_SESSION['Montant_Virement_formate'] ;
 $Montant_Virement = $_SESSION['Montant_Virement'];

 // == On gère le virement dans une transaction SQL ==

$virementOK=Virement($Num_Cpt_Debit,$Num_Cpt_Credit,$Montant_V
irement);
 // ---
 if ($virementOK)
 {
 // -- On affiche le résultat du virement --
 $Tab_deux_comptes[0]=Info_Compte($Num_Cpt_Debit) ;
 $Tab_deux_comptes[1]=Info_Compte($Num_Cpt_Credit);
 if (!$ERR_TRAIT)
 Affichage_Liste_Comptes("Résultat : Virement de
$Montant_Virement_formate, du compte $Num_Cpt_Debit -> le
compte $Num_Cpt_Credit",$Tab_deux_comptes);
 }
 }
 else
 {
 $TitreMessage="Aucun virement" ;
 $TexteMessage="Aucun virement n'a été
effectué !";
 Affiche_Message_Erreur($TitreMessage,$TexteMessage);
 }
 }
 elseif (!empty($_POST['info_virement']))
 {
 // -- On récupère la variable de session le tableau des
comptes --
 $Tab_Tous_les_Comptes=$_SESSION['Tab_Tous_les_Comptes'] ;

123

$Tab_Colonne_IDCpt=array_column($Tab_Tous_les_Comptes,'ID_Cpt'
);
 // -- Initialisation des infos sur les comptes --
 $Infos_Cpt_Debit =array();
 $Infos_Cpt_Credit=array();
 // -- On récupère les valeurs saisies --
 if (isset($_POST['Num_Cpt_Debit'])) $Num_Cpt_Debit =
$_POST['Num_Cpt_Debit'] ;
 else $Num_Cpt_Debit = '' ;
 if (isset($_POST['Num_Cpt_Credit'])) $Num_Cpt_Credit =
$_POST['Num_Cpt_Credit'] ;
 else $Num_Cpt_Credit = '' ;
 if (isset($_POST['MtVir'])) $MtVir = $_POST['MtVir'] ;
 else $MtVir = '' ;
 // -- Protection contre l'injection HTML --
 $Num_Cpt_Debit = strip_tags($Num_Cpt_Debit) ;
 $Num_Cpt_Credit = strip_tags($Num_Cpt_Credit);
 $MtVir = strip_tags($MtVir) ;
 // -- Normalisation au format entier ou réel --
 $Num_Cpt_Debit = intval($Num_Cpt_Debit) ;
 $Num_Cpt_Credit = intval($Num_Cpt_Credit) ;
 $MtVir = floatval(str_replace(",",".",$MtVir));
 if (($Num_Cpt_Debit!=0)||($Num_Cpt_Credit!=0)||($MtVir!=0))
 {
 $Montant_Virement_formate=number_format($MtVir,2,","," ")."
€";
 // -- On récupère l'indice numérique de la case --
 $numcaseDebit =
array_search($Num_Cpt_Debit,$Tab_Colonne_IDCpt) ;
 $numcaseCredit =
array_search($Num_Cpt_Credit,$Tab_Colonne_IDCpt);
 // array_search() retourne le numéro de la case du tableau
 // ou bien false en cas d'échec
 // attention il faut utiliser le triple = afin de résoudre
 // le problème de la donnée trouvée dans la case 0
 // valeur qui peut être interprétée comme false si le test
 // est noté : if (!$numcaseDebit)
 if ($numcaseDebit == false)
 {
 $TitreMessage = "Numéro de compte invalide" ;
 $TexteMessage = "Compte à débiter
numéro $Num_Cpt_Debit inexistant !";
 Affiche_Message_Erreur($TitreMessage,$TexteMessage);
 $ERR_TRAIT = true;
 }
 elseif ($numcaseCredit == false)
 {

124

 $TitreMessage = "Numéro de compte invalide" ;
 $TexteMessage = "Compte à créditer
numéro $Num_Cpt_Credit inexistant !";
 Affiche_Message_Erreur($TitreMessage,$TexteMessage);
 $ERR_TRAIT = true;
 }
 else
 {
 // -- On affiche le résultat du virement --
 $Tab_deux_comptes[0] = Info_Compte($Num_Cpt_Debit) ;
 $Tab_deux_comptes[1] = Info_Compte($Num_Cpt_Credit);
 if (!$ERR_TRAIT)
 Affichage_Liste_Comptes("Résumé :
Virement de $Montant_Virement_formate, du compte
$Num_Cpt_Debit -> le compte
$Num_Cpt_Credit",$Tab_deux_comptes);
 $_SESSION['Num_Cpt_Debit'] = $Num_Cpt_Debit ;
 $_SESSION['Num_Cpt_Credit'] = $Num_Cpt_Credit ;
 $_SESSION['Montant_Virement_formate'] =
$Montant_Virement_formate ;
 $_SESSION['Montant_Virement'] = $MtVir ;
 ?>

 <form
action="MySQL_PDO_transaction_secure_prepare_web.php"
method="post">
 <fieldset>
 <legend>Confirmation du virement</legend>

 Merci de confirmer le virement :

 Oui <input type="radio" name="RepVir" value="oui">
 Non <input type="radio" name="RepVir" value="non"
checked="checked">

 <input type="submit" name="confirmation_virement"
value="Confirmer" />
 </fieldset>
 </form>
 <?php
 }
 }
 }
 else
 {
 // -- On affiche l'état des comptes AVANT la transaction --
 $Tab_Tous_les_Comptes=Affiche_Etat_Comptes("Etat des comptes
AVANT le virement");
 // -- On récupère la colonne des ID_Cpt --
 if (!$ERR_TRAIT)
 {

125

 // Conserve en variable de session le tableau des comptes
 $_SESSION['Tab_Tous_les_Comptes']=$Tab_Tous_les_Comptes ;
 // Affichage du formulaire de saisie
 ?>

 <form action="MySQL_PDO_transaction_secure_prepare_web.php"
method="post">
 <fieldset>
 <legend>Saisissez les informations du virement
:</legend>

 Numéro (ID_Cpt) du compte à
créditer : <input type="text"
name="Num_Cpt_Debit" size="3" maxlength="3" required
pattern="[1-9][0-9]{0,2}" placeholder="7"
autofocus/>

 Numéro (ID_Cpt) du compte à
débiter : <input type="text"
name="Num_Cpt_Credit" size="3" maxlength="3" required
pattern="[1-9][0-9]{0,2}" placeholder="12" />

 Montant du virement : <input type="text"
name="MtVir" size="8" maxlength="8" placeholder="185,33"
required pattern="[1-9][0-9\.\,]{0,7}" /> €

 <input type="submit" name="info_virement" value="Effectuer
le virement" />
 <input type="reset" value="Effacer le formulaire" />
 </fieldset>
 </form>
 <?php
 }
 }
 ?>
 </body>
</html>

Voici le fichier MySQL_PDO_transaction_include_sprog_commun_web.php,
contenant les différentes fonctions utilisées dans le programme.

Listing 10-1.13 : fichier MySQL_PDO_transaction_include_sprog_commun_web.php
<?php
define("WEB_EOL","
");
// ==
// -- Fonction d'affichage de l'état de tous les comptes --
// ===
function Affiche_Etat_Comptes($texte)
{

126

 global
$ERR_TRAIT,$TYPE_DBB,$SERVEUR,$BASEDD,$LOGIN_ADM,$MDP_ADM,$TAB
LECOMPTES,$TABLECLIENTS;
 try {
 // -- Contexte pour le message d'erreur --
 $contexte="Connexion base de données";
 // -- Connexion de la base de données --
 $bdd = new
PDO($TYPE_DBB.":host=".$SERVEUR.";dbname=".$BASEDD,$LOGIN_ADM,
 $MDP_ADM, array(PDO::ATTR_PERSISTENT => true));
 // -- Définition du codage en UTF8 --
 $bdd->exec("SET CHARACTER SET utf8");
 // -- Initialisation des Exceptions PDO pour prepare --
 $bdd->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 // Limitation aux comptes de dépôt
 $type_compte="Compte_Dépôts";
 // On affiche tous les comptes courant Avant le virement
 // -- Contexte pour le message d'erreur --
 $contexte="Problème de requête";
 // -- Préparation de la requête --
 $requete_sql='SELECT
cb.ID_Cpt,cb.Agence,cb.Numero,cb.Type,cl.Nom,cl.Prenom,ROUND(c
b.Solde,2) Solde_Compte FROM '.$TABLECOMPTES.' cb INNER JOIN
'.$TABLECLIENTS.' cl ON cb.ID_Clt=cl.ID_Clt WHERE
Type=:type_compte';
 $RequetePreparee = $bdd->prepare($requete_sql);
 // -- Liaison avec les paramètres --
 $RequetePreparee->bindParam(':type_compte', $type_compte);
 // -- Exécution de la requête --
 $RequetePreparee->execute();
 // -- Retourne un tableau associatif --
 $RequetePreparee->setFetchMode(PDO::FETCH_ASSOC);
 // -- Boucle de traitement de chaque client --
 $Tab_Comptes=$RequetePreparee->fetchAll();
 // -- Conversion de la colonne solde au format français --
 foreach ($Tab_Comptes as $Num => $un_cpt)
 {

$un_cpt['Solde_Compte']=number_format($un_cpt['Solde_Compte'],
2,","," ")." €";
 $Tab_Comptes[$Num]=$un_cpt;
 }
 // -- Affichage des données retournées --
 Affichage_Liste_Comptes($texte,$Tab_Comptes);
 // -- Fermeture de la requête --
 $RequetePreparee->closeCursor();
 return $Tab_Comptes;

127

 }
 catch(Exception $e) {
 $TitreMessage = $contexte ;
 $TexteMessage = $e->getMessage();
 Affiche_Message_Erreur($TitreMessage,$TexteMessage);
 $ERR_TRAIT=true;
 }
}
// ===
// -- Fonction outil d'affichage du message d'erreur --
// ===
function Affiche_Message_Erreur($titre,$message)
{
 ?>
 <fieldset>
 <legend><?php echo $titre ?></legend>

 <?php echo $message ?>

 </fieldset>
 <?php
}
// ===
// -- Fonction outil d'affichage d'un tableau de comptes --
// ===
function Affichage_Liste_Comptes($titre,$tcomptes)
{
 // -- Affichage entête du tableau --
 reset($tcomptes);
 $un_compte=current($tcomptes);
 $liste_champs=array_keys($un_compte);
 ?>
 <table summary="Tableau de résultat">
 <caption><?php echo $titre;?></caption>
 <thead>
 <tr>
 <!-- entête du tableau -->
 <?php
 echo "<tr>";
 $nbchamps=0;
 foreach($liste_champs as $nom_champ)
 {
 echo "<th>$nom_champ</th>";
 $nbchamps++;
 }
 echo "</tr>";
 // -- Affichage des lignes du tableau --
 if (count($tcomptes) ==0)
 {

128

 echo "<td colspan=\"$nbchamps\">Aucun compte à
afficher</td>";
 }
 else
 {
 foreach ($tcomptes as $indice => $un_compte)
 {
 echo "<tr>";
 // importation des variables à partir de l'étiquette des
champs
 extract($un_compte,EXTR_OVERWRITE);
 echo "<tr>";
 foreach($liste_champs as $nom_champ)
 {
 $val=$$nom_champ;
 echo "<td>$val</td>";
 }
 echo "</tr>";
 }
 }
 ?>
 </table>
 <?php
}
// ==
// -- Fonction d'information sur l'état d'un seul compte --
// ==
function Info_Compte($compte)
{
 global
$ERR_TRAIT,$TYPE_DBB,$SERVEUR,$BASEDD,$LOGIN_ADM,$MDP_ADM,$TAB
LECOMPTES,$TABLECLIENTS;
 try {
 // -- Contexte pour le message d'erreur --
 $contexte="Connexion base de données";
 // -- Connexion de la base de données --
 $bdd = new
PDO($TYPE_DBB.":host=".$SERVEUR.";dbname=".$BASEDD,$LOGIN_ADM,
 $MDP_ADM,array(PDO::ATTR_PERSISTENT => true));
 // -- Définition du codage en UTF8 --
 $bdd->exec("SET CHARACTER SET utf8");
 // -- Initialisation des Exceptions PDO pour prepare --
 $bdd->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 $contexte="Problème de requête sur la table";
 // -- Préparation de la requête --
 $requete_sql='SELECT
cb.ID_Cpt,cb.Agence,cb.Numero,cb.Type,cl.Nom,cl.Prenom,ROUND(c

129

b.Solde,2) Solde_Compte FROM '.$TABLECOMPTES.' cb INNER JOIN
'.$TABLECLIENTS.' cl ON cb.ID_Clt=cl.ID_Clt WHERE
ID_Cpt=:compte';
 $RequetePreparee = $bdd->prepare($requete_sql);
 // -- Liaison avec les paramètres --
 $RequetePreparee->bindParam(':compte', $compte,
PDO::PARAM_INT);
 // -- Exécution de la requête --
 $RequetePreparee->execute();
 // -- Retourne un tableau associatif --
 $RequetePreparee->setFetchMode(PDO::FETCH_ASSOC);
 // -- Boucle de traitement de chaque client --
 $Tab_Infos_Cpt=$RequetePreparee->fetchAll();
 // -- Conversion de la colonne solde au format français --
 foreach ($Tab_Infos_Cpt as $Num => $un_cpt)
 {

$un_cpt['Solde_Compte']=number_format($un_cpt['Solde_Compte'],
2,","," ")." €";
 $Tab_Infos_Cpt[$Num]=$un_cpt;
 }
 $Tab_Infos_Un_Cpt=$Tab_Infos_Cpt[0];
 return $Tab_Infos_Un_Cpt;
 }
 catch(Exception $e) {
 $TitreMessage = $contexte ;
 $TexteMessage = $e->getMessage();
 Affiche_Message_Erreur($TitreMessage,$TexteMessage);
 $ERR_TRAIT=true;
 }
}
// ==========================
// -- Fonction de virement --
// ==========================
function Virement($NumCptDebit,$NumCptCredit,$MtVirt)
{
 global
$ERR_TRAIT,$TYPE_DBB,$SERVEUR,$BASEDD,$LOGIN_ADM,$MDP_ADM,$TAB
LECOMPTES,$TABLECLIENTS;
 $virement_effectue = true ;
 $ConnexionBDD = false;
 $TransactionDemarree = false;
 try {
 // -- Contexte pour le message d'erreur --
 $contexte="Connexion base de données";
 // -- Connexion de la base de données --
 $bdd = new
PDO($TYPE_DBB.":host=".$SERVEUR.";dbname=".$BASEDD,$LOGIN_ADM,
 $MDP_ADM, array(PDO::ATTR_PERSISTENT => true));

130

 $ConnexionBDD=true;
 // -- Initialisation des Exceptions PDO pour prepare --
 $bdd->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 // -- Définition du codage en UTF8 --
 $bdd->exec("SET CHARACTER SET utf8");
 // -- On gère le virement dans une transaction SQL --
 // ==============================
 // == On débute la transaction ==
 // ==============================
 // -- Contexte pour le message d'erreur --
 $contexte="Initialisation virement";
 $bdd->beginTransaction() ;
 $TransactionDemarree=true;
 // =========================
 // == On débite le compte ==
 // =========================
 // -- Contexte pour le message d'erreur --
 $contexte="Débit du compte" ;
 // -- Préparation de la requête --
 $requete_sql='UPDATE '.$TABLECOMPTES.' SET
Solde=Solde+:MontantVir WHERE Id_Cpt=:NumCptOperation';
 $reponse = $bdd->prepare($requete_sql);
 // -- Liaison avec les paramètres --
 $reponse->bindParam(':MontantVir', $MontantVir);
 $reponse->bindParam(':NumCptOperation', $NumCptOperation,
PDO::PARAM_INT);
 // -- Affectation des valeurs pour les paramètres --
 $MontantVir = -$MtVirt ;
 $NumCptOperation = $NumCptDebit ;
 // -- Exécution de la requête --
 $reponse->execute() ;
 // -- Fermeture de la requête --
 $reponse->closeCursor();
 // ==========================
 // == On crédite le compte ==
 // ==========================
 // -- Contexte pour le message d'erreur
 $contexte="Crédit du compte";
 // La requête est déjà préparée, elle ne change pas
 // les paramètres sont déjà liés (bind) ils ne changent pas
 // Affectation des valeurs pour les paramètres
 $MontantVir = +$MtVirt ;
 $NumCptOperation = $NumCptCredit ;
 // -- Exécution de la requête --
 $reponse->execute() ;
 // -- Fermeture de la requête --
 $reponse->closeCursor();

131

 // ==============================
 // == On valide la transaction ==
 // ==============================
 // -- Si aucune erreur, on valide la transaction --
 $contexte = "Validation virement";
 $reponse = $bdd->commit();
 }
 catch(Exception $e) {
 // ==============================
 // == On annule la transaction ==
 // ==============================
 if ($ConnexionBDD && $TransactionDemarree)
 {
 try {
 $bdd->rollback();
 }
 catch(Exception $er) {
 $TitreMessage = 'Problème sur le virement -
Transaction annulée';
 $TexteMessage = 'Annulation : '.$er->getMessage();
 Affiche_Message_Erreur($TitreMessage,$TexteMessage);
 $virement_effectue=false;
 }
 }
 $TitreMessage = 'Problème sur le virement -
Transaction annulée';
 $TexteMessage = $contexte.' : '.$e->getMessage();
 Affiche_Message_Erreur($TitreMessage,$TexteMessage);
 $virement_effectue=false;
 }
 return $virement_effectue;
}
?>

Voici le fichier MySQL_PDO_transaction_include_param_dbb.php :

Listing 10-1.14 : fichier MySQL_PDO_transaction_include_param_dbb.php
<?php
// -- Paramètres de connexion à la base de données --
$TYPE_DBB="mysql";
$SERVEUR="localhost";
$BASEDD="CoursPHP";
$TABLECOMPTES="comptes_bancaires";
$TABLECLIENTS="clients_bancaires";
$LOGIN_ADM="root";
$MDP_ADM="xxxx";

132

?>

Remarque
Il est préférable d’utiliser un compte MySQL autre que root pour effectuer cette transaction.
Ce compte doit avoir le droit de consulter les données sur les tables « comptes_bancaires »
et « clients_bancaires » (SELECT) et le droit de modifier les données de la table
« comptes_bancaires (UPDATE). Le texte « xxxx » doit être remplacé par le vrai mot de
passe ou bien par '' si aucun mot de passe n’est affecté.

Pour le web avec des listes déroulantes
Le programme MySQL_PDO_formulaire_ajax_prepare_web.php est une varia-
tion du programme précédent utilisant les requêtes préparées.
Il propose une interface de saisie beaucoup plus conviviale. Il utilise les listes dé-
roulantes pour saisir successivement l’agence, le client, et le compte à débiter, ainsi
que l’agence, le client et le compte à créditer.

Chaque liste déroulante est alimentée par les résultats d’une requête SQL. Le
contenu de la liste suivante dépend de la sélection effectuée dans la liste précé-
dente. Ainsi si l’agence bancaires « A » est choisie, seuls les clients de cette agence
seront proposés dans la liste suivante. Si parmi cette liste le client « C » est sélec-
tionné, seuls les comptes de ce client seront proposés dans la liste suivante.

Ce programme utilise le langage JavaScript Ajax.
Il utilise les programmes suivants :

• traitement_clients_credit_prepare.php : « include » qui génère la liste
déroulante des clients et effectue la sélection du client à créditer ;

• traitement_clients_debit_prepare.php : « include » qui génère la liste
déroulante des clients et effectue la sélection du client à débiter ;

• traitement_comptes_credit_prepare.php : « include » qui génère la liste
déroulante des comptes et effectue la sélection du compte à créditer ;

• traitement_comptes_debit_prepare.php : « include » qui génère la liste
déroulante des comptes et effectue la sélection du compte à débiter ;

• MySQL_PDO_transaction_secure_prepare_ajax_web.php : « include » qui
effectue le virement ;

• MySQL_PDO_fonctions_ajax_prepare.js : « include » contenant les fonc-
tions JavaScript Ajax ;
Nous ne présentons pas ici ce programme qui est téléchargeable sur le site de

l’éditeur, mais des copies d’écran de son exécution.

La figure 10-1.23 présente le premier écran de l’interface sans aucune saisie.

Seules les agences pour le compte de débit et de crédit apparaissent.

133

Figure 10-1.23
Virement : Liste déroulante-Ecran-1

La liste déroulante de l’agence a été alimentée par une requête SQL sur la table

« agences_bancaires » (figure 10-1.24).

Figure 10-1.24
Virement : Liste déroulante-Ecran-2

Dès la sélection d’une agence la liste déroulante du client apparaît (figure 10-

1.25).

134

Figure 10-1.25
Virement : Liste déroulante-Ecran-3

Elle a été alimentée par une jointure interne sur les tables « comptes_bancaires »

et « clients_bancaires » afin de faire apparaître les noms et les prénoms des clients
ayant un compte dans cette agence (Figure 10-1.26).

Figure 10-1.26
Virement : Liste déroulante-Ecran-4

La tentative de validation en cours de sélection fait apparaître un message

d’erreur reprenant les valeurs saisies (Figure 10-1.27).

135

Figure 10-1.27
Virement : Liste déroulante-Ecran-5

La liste déroulante des comptes a été alimentée par une requête SQL sur les

comptes de ce client dans cette agence. Seuls les comptes pouvant supporter un
virement sont affichés, ce qui exclu les cartes de paiement et autres qui sont ados-
sées à un compte courant (Figure 10-1.28).

Figure 10-1.28

136

Virement : Liste déroulante-Ecran-6

L’écran suivant montre l’ensemble des données renseignées (Figure 10-1.29).

Figure 10-1.29
Virement : Liste déroulante-Ecran-7

La validation affiche un écran de récapitulation et de confirmation (Figure 10-

1.30).

Figure 10-1.30
Virement : Liste déroulante-Ecran-8

Une fois confirmée, le virement est effectué en mode transactionnel, et le résultat

est affiché (Figure 10-1.31).

137

Figure 10-1.31
Virement : Liste déroulante-Ecran-9

Le programme MySQL_PDO_formulaire_ajax_query_web.php est une varia-

tion du programme précédent utilisant la méthode « query » à la place des requêtes
préparées. Il utilise les programmes suivants :
• traitement_clients_credit_query.php : « include » qui génère la liste

déroulante des clients et effectue la sélection du client à créditer ;
• traitement_clients_debit_query.php : « include » qui génère la liste dé-

roulante des clients et effectue la sélection du client à débiter ;
• traitement_comptes_credit_query.php : « include » qui génère la liste

déroulante des comptes et effectue la sélection du compte à créditer ;
• traitement_comptes_debit_query.php : « include » qui génère la liste dé-

roulante des comptes et effectue la sélection du compte à débiter ;
• MySQL_PDO_transaction_secure_prepare_ajax_web.php : « include » qui

effectue le virement ;
• MySQL_PDO_fonctions_ajax_query.js : « include » contenant les fonctions

JavaScript Ajax ;

138

10-1.1	Présentation	...	1	

10-1.2	Le	langage	SQL	...	1	
Accès	au	serveur	de	Base	de	données	...	2	
Afficher	toutes	les	bases	de	données	...	2	
Quitter	le	serveur	de	Base	de	données	...	2	
Gestion	d’une	base	de	données	..	3	
Création	..	3	
Suppression	..	3	

Gestion	d’une	table	..	3	
Création	..	3	
Affichage	des	tables	...	4	
Affichage	de	la	structure	d’une	table	...	4	
Suppression	complète	de	la	table	...	4	
Vider	la	table	de	ses	données	..	5	

Gestion	des	données	..	5	
Insertion	de	données	..	5	
Affichage	..	5	
Modification	...	5	
Suppression	..	5	
Les	critères	de	sélection	..	6	
Le	filtrage	avec	WHERE	...	7	
Le	tri	avec	ORDER	BY	...	9	
La	limitation	avec	LIMIT	...	10	
Le	filtrage	avec	HAVING	..	11	

Le	regroupement	avec	GROUP	BY	..	11	
Les	fonctions	SQL	..	11	
Les	fonctions	d’agrégat	...	13	
AVG	..	13	
COUNT	...	14	
MAX	...	15	
MIN	...	16	
SUM	...	16	

Quelques	fonctions	sur	les	chaînes	de	caractères	...	17	
CONCAT	...	17	
LENGTH	...	18	
REPLACE	...	19	
SUBSTRING	..	20	

139

LEFT	...	21	
RIGHT	...	21	
REVERSE	...	21	
TRIM,	LTRIM,	RTRIM	...	22	
LPAD,	RPAD	...	22	
LOWER,	LCASE	...	23	
UPPER,	UCASE	..	23	
LOCATE,	INSTR	..	24	

Les	fonctions	mathématiques	..	25	
TRUNCATE	...	25	
ROUND	...	25	

Les	dates	en	SQL	..	26	
Les	types	de	dates	et	d’heures	...	26	
Sélection	des	enregistrements	selon	une	date	..	26	
Les	fonctions	de	dates	et	d’heures	...	27	
NOW,	CURDATE,	CURTIME	..	27	
DAY,	MONTH,	YEAR	..	27	
DATE_FORMAT	...	28	
DATEDIFF	...	29	

Les	fonctions	MySQL	d’information	..	29	
Information	sur	MySQL,	les	utilisateurs	et	la	base	de	données	29	
VERSION	...	29	
USER,	SYSTEM_USER,	SESSION_USER	...	30	
CURRENT_USER	...	30	
SCHEMA,	DATABASE	..	30	
CONNECTION_ID	...	30	
BENCHMARK	...	31	
CHARSET	..	31	
COERCIBILITY	..	31	
COLLATION	..	32	

Information	sur	les	dernières	opérations	...	33	
FOUND_ROWS	...	33	
ROWS_COUNT	...	34	
LAST_INSERT_ID	..	34	

Les	jointures	entre	tables	..	36	
Les	tables	support	...	36	
La	table	«	clients_bancaires	»	..	36	
La	table	«	comptes_bancaires	»	..	37	
Relation	entre	les	tables	..	40	

Les	types	de	jointure	..	40	
Mise	en	œuvre	de	la	jointure	interne	..	40	

140

Avec	WHERE	...	40	
Avec	INNER	JOIN	...	46	

Mise	en	œuvre	de	la	jointure	externe	avec	LEFT	JOIN	et	RIGHT	JOIN	48	
Sauvegarde	de	la	base	de	données	...	51	
Restauration	de	la	base	de	données	..	52	
Les	requêtes	préparées	..	52	
Principe	...	52	
Les	variables	utilisateurs	...	52	
Création	et	modification	...	52	
L’affichage	...	53	
L’utilisation	...	53	

Création	d’une	requête	préparée	...	53	
Exécution	d’une	requête	préparée	..	54	
Suppression	d’une	requête	préparée	...	56	
Avantages	...	56	

Le	mode	transactionnel	...	56	
Problématique	initiale	..	56	
Une	caractéristique	du	moteur	de	stockage	..	57	
Gestion	de	la	validation	automatique	via	autocommit	57	
Principe	..	57	
Affichage	de	l’état	..	58	
Modification	de	l’état	...	58	
Inconvénients	..	58	
Exemples	d’utilisation	...	59	
Exemple	de	fonctionnement	..	59	
Impact	pour	les	autres	utilisateurs	...	62	

Utilisation	d’une	transaction	spécifique	avec	START	TRANSACTION	65	
Principe	..	65	
Les	requêtes	:	...	66	
START	TRANSACTION	...	66	
COMMIT	..	66	
ROLLBACK	..	66	

Exemples	...	66	
Exemple	d’annulation	...	66	
Exemple	de	validation	..	68	

La	gestion	des	utilisateurs	..	70	
Principe	...	70	
Affichage	des	utilisateurs	existants	...	70	
La	table	mysql.user	...	70	

141

L’utilisateur	anonyme	..	70	
Création	d’un	compte	utilisateur	CREATE	USER	...	71	
Gestion	des	privilèges	...	72	
Affichage	des	privilèges	SHOW	GRANTS	..	72	
Ajout	de	privilèges	GRANT	...	73	
Pour	le	compte	personnesadm@%	..	73	
Pour	le	compte	personnesadm@localhost	..	73	
Variations	syntaxiques	...	74	

Retrait	de	privilèges	REVOKE	...	74	
Sur	une	table	particulière	...	74	
Variations	syntaxiques	...	74	

Gestion	des	paramètres	de	connexion	...	75	
Problématique	..	75	
Affichage	des	paramètres	...	75	
Modification	des	paramètres	..	76	

Renommer	un	compte	utilisateur	RENAME	USER	..	76	
Suppression	d’un	compte	utilisateur	DROP	USER	..	77	

10-1.3	Sécurisation	de	MySQL	..	78	
Sécurisation	des	comptes	..	78	
Le	compte	root	...	79	
Mot	de	passe	..	79	
Accès	à	distance	..	79	

Le	compte	anonyme	...	80	
La	base	de	test	..	81	
Script	de	sécurisation	..	81	

Sécurisation	réseau	...	84	

10-1.4	PDO	–	PHP	Data	Objects	–	Complément	85	
Présentation	...	85	
Programmes	PHP	avec	filtrage	et	fonctions	SQL	...	85	
Le	filtrage	..	85	
Les	fonctions	d’agrégat	...	86	
Les	fonctions	sur	les	chaînes	de	caractères	...	88	
Les	fonctions	mathématiques	..	89	
Les	fonctions	de	dates	et	d’heures	...	91	

Les	jointures	internes	...	99	
Les	jointures	externes	...	104	

Le	mode	transactionnel	avec	MySQL	et	PDO	..	106	
Principe	...	107	

142

Les	fonctions	...	107	
Les	syntaxes	..	107	
Avec	des	requêtes	standards	...	108	
Avec	des	requêtes	préparées	...	109	

Exemples	...	110	
En	shell	..	110	
Pour	le	web	..	120	
Pour	le	web	avec	des	listes	déroulantes	...	132	

	

143

A	
ALTER	TABLE	(instruction	SQL)	3	
autocommit	(variable	SQL)	58,	60	
AVG()	(fonction	SQL)	13,	86	

B	
beginTransaction()	(méthode	PDO)	107	
BENCHMARK()	(fonction	SQL)	31	

C	
CHARSET()	(fonction	SQL)	31	
Classes	
DateTime()	...	92	

COERCIBILITY()	(fonction	SQL)	31	
COLLATION()	(fonction	SQL)	32	
Commandes	UNIX	
mysql	..	2,	52	
mysqldump	...	51	

COMMIT	(instruction	SQL)	59,	61	
commit()	(méthode	PDO)	107	
CONCAT()	(fonction	SQL)	17,	88	
CONNECTION_ID()	(fonction	SQL)	30	
COUNT()	(fonction	SQL)	14	
CREATE	DATABASE	(instruction	SQL)	3	
CREATE	TABLE	(instruction	SQL)	3	
CREATE	USER	(instruction	SQL)	72	
createFromFormat()	(méthode)	92	
CURRENT_USER()	(fonction	SQL)	30	

D	
date_default_timezone_set()	(méthode)	..	92	
DATE_FORMAT()	(fonction	SQL)	28,	92	
DATEDIFF()	(fonction	SQL)	29	
DateTime	(classe)	..	92	
DAY(),MONTH(),YEAR()	(fonction	SQL)	..	27	
DEALLOCATE	PREPARE	(instruction	SQL)
	..	56	

DELETE	(instruction	SQL)	5,	81	
DESCRIBE	(instruction	SQL)	4	
DROP	DATABASE	(instruction	SQL)	3	

DROP	TABLE	(instruction	SQL)	4,	81	
DROP	USER	(instruction	SQL)	78,	80	

E	
EXECUTE	(instruction	SQL)	55	

F	
Fonctions	SQL	
AVG()	...	13,	86	
BENCHMARK()	..	31	
CHARSET()	..	31	
COERCIBILITY()	...	31	
COLLATION()	...	32	
CONCAT()	..	17,	88	
CONNECTION_ID()	30	
COUNT()	...	14	
CURRENT_USER()	..	30	
DATE_FORMAT()	28,	92	
DATEDIFF()	..	29	
DAY(),MONTH(),YEAR()	27	
FOUND_ROWS()	...	33	
LAST_INSERT_ID()	34	
LCASE()	..	23	
LEFT()	...	21	
LENGTH()	..	18	
LOCATE(),INSTR()	24	
LOWER()	..	23,	88	
LPAD(),RPAD()	...	22	
MAX()	..	15	
MIN()	...	16	
NOW(),CURDATE(),CURTIME()	27	
REPLACE()	..	19	
REVERSE()	..	21	
RIGHT()	..	21	
ROUND()	13,	25,	42,	86	
ROWS_COUNT()	..	34	
SCHEMA(),DATABASE()	30	
SUBSTRING()	...	20	
SUM()	...	16,	42,	86	
TRIM(),LTRIM(),RTRIM()	22	
TRUNCATE()	..	25,	90	
UPPER(),UCASE()	..	23	

144

USER(),SYSTEM_USER(),SESSION_USER
()	..	30	

VERSION()	...	30	
FOUND_ROWS()	(fonction	SQL)	33	

G	
GRANT	(instruction	SQL)	73	
GROUP	BY	(instruction	SQL)	11,	42,	86	

H	
HAVING	(instruction	SQL)	11,	86	

I	
IDENTIFIED	BY	(instruction	SQL)	72	
INNER	JOIN	(instruction	SQL)	46,	103	
INSERT	INTO	(instruction	SQL)	5	
Instructions	SQL	
ALTER	TABLE	...	3	
COMMIT	...	59,	61	
CREATE	DATABASE	3	
CREATE	TABLE	..	3	
CREATE	USER	..	72	
DEALLOCATE	PREPARE	56	
DELETE	...	5,	81	
DESCRIBE	...	4	
DROP	DATABASE	..	3	
DROP	TABLE	...	4,	81	
DROP	USER	...	78,	80	
EXECUTE	..	55	
GRANT	..	73	
GROUP	BY	...	11,	42,	86	
HAVING	..	11,	86	
IDENTIFIED	BY	...	72	
INNER	JOIN	...	46,	103	
INSERT	INTO	..	5	
LEFT	JOIN	..	48,	104	
LIKE	...	54	
LIMIT	...	10,	86	
ORDER	BY	..	9,	85	
PREPARE	...	54	
QUIT	..	2	
RENAME	USER	..	77	
REVOKE	..	74	

RIGHT	JOIN	...	48,	105	
ROLLBACK	59,	60,	61	
SELECT	..	5	
SET	...	53	
SET	PASSWORD	72,	73,	79	
SHOW	DATABASES	..	2	
SHOW	GRANTS	...	73	
SHOW	TABLES	...	4	
SOURCE	..	52	
START	TRANSACTION	59,	65	
TRUNCATE	TABLE	...	5	
UPDATE	...	5,	60	
USING	..	55	
WHERE	..	7,	40	

L	
LAST_INSERT_ID()	(fonction	SQL)	34	
LCASE()	(fonction	SQL)	23	
LEFT	JOIN	(instruction	SQL)	48,	104	
LEFT()	(fonction	SQL)	21	
LENGTH()	(fonction	SQL)	18	
LIKE	(instruction	SQL)	54	
LIMIT	(instruction	SQL)	10,	86	
LOCATE(),INSTR()	(fonction	SQL)	24	
LOWER()	(fonction	SQL)	23,	88	
LPAD(),RPAD()	(fonction	SQL)	22	

M	
MAX()	(fonction	SQL)	15	
Méthodes	
createFromFormat()	92	
date_default_timezone_set()	92	

MIN()	(fonction	SQL)	..	16	
mysql	(commande	UNIX)	2,	52	
mysqldump	(commande	UNIX)	51	

N	
NOW(),CURDATE(),CURTIME()	(fonction	
SQL)	...	27	

O	
ORDER	BY	(instruction	SQL)	9,	85	

145

P	
PDO-PHP	Data	Objects	
beginTransaction()	(méthode)	107	
commit()	(méthode)	107	
rollback()	(méthode)	107	

PREPARE	(instruction	SQL)	54	

Q	
QUIT	(instruction	SQL)	2	

R	
RENAME	USER	(instruction	SQL)	77	
REPLACE()	(fonction	SQL)	19	
REVERSE()	(fonction	SQL)	21	
REVOKE	(instruction	SQL)	74	
RIGHT	JOIN	(instruction	SQL)	48,	105	
RIGHT()	(fonction	SQL)	21	
ROLLBACK	(instruction	SQL)	59,	60,	61	
rollback()	(méthode	PDO)	107	
ROUND()	(fonction	SQL)	13,	25,	42,	86	
ROWS_COUNT()	(fonction	SQL)	34	

S	
SCHEMA(),DATABASE()	(fonction	SQL)	..	30	
SELECT	(instruction	SQL)	5	
SET	(instruction	SQL)	53	
SET	PASSWORD	(instruction	SQL)	72,	73,	
79	

SHOW	DATABASES	(instruction	SQL)	2	

SHOW	GRANTS	(instruction	SQL)	73	
SHOW	TABLES	(instruction	SQL)	4	
SOURCE	(instruction	SQL)	52	
START	TRANSACTION	(instruction	SQL)
	..	59,	65	

SUBSTRING()	(fonction	SQL)	20	
SUM()	(fonction	SQL)	16,	42,	86	

T	
Table	
UTF8	...	3,	31	

TRIM(),LTRIM(),RTRIM()	(fonction	SQL)22	
TRUNCATE	TABLE	(instruction	SQL)	5	
TRUNCATE()	(fonction	SQL)	25,	90	

U	
UPDATE	(instruction	SQL)	5,	60	
UPPER(),UCASE()	(fonction	SQL)	23	
USER(),SYSTEM_USER(),SESSION_USER()	
(fonction	SQL)	...	30	

USING	(instruction	SQL)	55	

V	
Variables	SQL	
autocommit	..	58,	60	

VERSION()	(fonction	SQL)	30	

W	
WHERE	(instruction	SQL)	7,	40	

